Paroxysmal Atrioventricular Block Induced by a Single Ventricular Premature Beat in the Absence of Overt Atrioventricular Conduction System Disease

Manish Undavia, MD; Avi Fischer, MD

Paroxysmal atrioventricular (AV) block is an unusual phenomenon that has been previously described. We report the case of a 78-year-old man who presented after an episode of syncope while seated in church. On presentation to the hospital, the initial electrocardiogram showed sinus rhythm with a normal PR interval, QRS duration, and corrected QT interval. During telemetry monitoring, several episodes of high-grade AV block were observed, and all episodes occurred after a single premature ventricular complex (Figure). AV conduction resumed after several nonconducted P waves (Figure). Ultimately, the patient was implanted with a dual-chamber pacemaker.

Advanced AV block has been known to occur after a single ventricular premature complex in patients with advanced His-Purkinje system disease. Transient AV conduction abnormalities, as a result of rapid ventricular pacing, is thought to occur as a result of depressed amplitude and excitability of Purkinje fibers and may require retrograde conduction to the Purkinje system. Perpetuation of the AV conduction disturbance may result from phase 4 block; however, this phenomenon generally occurs in the presence of preexistent intraventricular and AV conduction disturbances such as bundle-branch block and Mobitz II block. It has also been described in the absence of overt AV conduction disease. The precise mechanism for the occurrence of paroxysmal AV block remains speculative but is thought to be the result of concealed retrograde conduction into the abnormal His-Purkinje system. Retrograde activation after a single ventricular premature complex can either worsen or improve conduction by altering the degree of cellular uncoupling and the site of block. Under abnormal conditions, paroxysmal AV block can be observed after acceleration or deceleration of the sinus rate, because of prolonged refractoriness. Another possible explanation in our patient is that intra-Hisian conduction disease was present but not manifest on the surface electrocardiogram. On several occasions, the first QRS complex

Figure. AV block after a premature ventricular complex. The sinus rate is unchanged before and after the AV block. Resumption of AV conduction occurs with a narrower QRS and with delayed conduction.

From the Section of Electrophysiology, Mount Sinai Medical Center, New York, NY.

Correspondence to Avi Fischer, MD, Electrophysiology Section, Cardiovascular Institute, Mount Sinai Medical Center, One Gustave L. Levy Place, Box 1054, New York, NY 10029. E-mail avi.fischer@mssm.edu

(Circ Arrhythmia Electrophysiol. 2008;1:145-146.)

© 2008 American Heart Association, Inc.

Circ Arrhythmia Electrophysiol is available at http://circep.ahajournals.org

DOI: 10.1161/CIRCEP.108.779199
after AV block is narrower and conducted with delay, raising the possibility of equalized conduction delay within the His-Purkinje system.

In this patient, with no evidence of preexisting AV conduction disease on the surface electrocardiogram, paroxysmal AV block followed a single ventricular premature complex and led to syncope.

Disclosures

None.

References

Paroxysmal Atrioventricular Block Induced by a Single Ventricular Premature Beat in the Absence of Overt Atrioventricular Conduction System Disease
Manish Undavia and Avi Fischer

Circ Arrhythm Electrophysiol. 2008;1:145-146
doi: 10.1161/CIRCEP.108.779199
Circulation: Arrhythmia and Electrophysiology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved. Print ISSN: 1941-3149. Online ISSN: 1941-3084

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circep.ahajournals.org/content/1/2/145

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Arrhythmia and Electrophysiology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Arrhythmia and Electrophysiology is online at:
http://circep.ahajournals.org/subscriptions/