Correction

Correction to: Ventricular Microanatomy, Arrhythmias, and the Electrochemical Driving Force for Na⁺: Is There a Need for Flipped Learning?

In the article by Belardinelli et al, “Ventricular Microanatomy, Arrhythmias, and the Electrochemical Driving Force for Na⁺: Is There a Need for Flipped Learning?”, which published online on February 17, 2017, and appeared in the February 2017 issue of the journal (Circulation: Arrhythmia and Electrophysiology. 2017;10:e004955. DOI: 10.1161/CIRCEP.117.004955, corrections are needed.

Significant changes to the wording include the following:
1. On page 1, a change of “electric” to “electrophysiological”: “A well-known feature of the electrophysiological activity of the mammalian heart is that it can be regulated by tissue microanatomy.”
2. On page 1, a change of “expressed uniformly” to “uniform”: “Recent results strongly suggest that the expression of some of the ion channels responsible for the cardiac action potential is not uniform on the surface membrane or sarcolemma of each myocyte.”
3. In the figure legend, a change to of “90% of the total” to “up to 90% of the total”.
4. On page 3, a change of “anenome” to “sea anemone”: This sea anemone toxin–induced prolongation of the action potential may also give rise to significant K⁺ accumulation because of relatively long-lasting activation of intrinsic K⁺ currents.”

The authors apologize for these errors.

These corrections have been made to the current online version of the article, which is available at http://circep.ahajournals.org/content/10/2/e004955.
Correction to: Ventricular Microanatomy, Arrhythmias, and the Electrochemical Driving Force for Na⁺: Is There a Need for Flipped Learning?

_Circ Arrhythm Electrophysiol._ 2017;10:
doi: 10.1161/HAE.0000000000000023

_Circulation: Arrhythmia and Electrophysiology_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2017 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3149. Online ISSN: 1941-3084

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circep.ahajournals.org/content/10/3/e000023