Atrial Fibrillation Ablation Strategies for Paroxysmal Patients
Randomized Comparison Between Different Techniques

Luigi Di Biase, MD; Claude S. Elayi, MD; Tamer S. Fahmy, MD; David O. Martin, MD; Chi Keong Ching, MD; Conor Barrett, MD; Rong Bai, MD; Dimpi Patel, DO; Yaariv Khaykin, MD; Richard Hongo, MD; Steven Hao, MD; Salwa Beheiry, RN; Gemma Pelargonio, MD; Antonio Dello Russo, MD; Michela Casella, MD; Pietro Santarelli, MD; Domenico Potenza, MD; Raffaele Fanelli, MD; Raimondo Massaro, MD; Paul Wang, MD; Amin Al-Ahmad, MD; Mauricio Arruda, MD; Sakis Themistoclakis, MD; Aldo Bonso, MD; Antonio Rossillo, MD; Antonio Raviele, MD; Robert A. Schweikert, MD; David J. Burkhardt, MD; Andrea Natale, MD

Background—Whether different ablation strategies affect paroxysmal atrial fibrillation (AF) long-term freedom from AF/atrial tachyarrhythmia is unclear. We sought to compare the effect of 3 different ablation approaches on the long-term success in patients with paroxysmal AF.

Methods and Results—One hundred three consecutive patients with paroxysmal AF scheduled for ablation and presenting in the electrophysiology laboratory in AF were selected for this study. Patients were randomized to pulmonary vein antrum isolation (PVAI; n = 35) versus biatrial ablation of the complex fractionated atrial electrograms (CFAEs; n = 34) versus PVAI followed by CFAEs (n = 34). Patients were given event recorders and followed up at 3, 6, 9, 12, and 15 months postablation. There was no statistical significant difference between the groups in term of sex, age, AF duration, left atrial size, and ejection fraction. At 1 year follow-up, freedom from AF/atrial tachyarrhythmia was documented in 89% of patients in the PVAI group, 91% in the PVAI plus CFAEs group, and 23% in the CFAEs group (\(P < 0.001\)) after a single procedure and with antiarrhythmic drugs.

Conclusion—No difference in terms of success rate was seen between PVAI alone and PVAI associated with defragmentation. CFAEs ablation alone had the smallest impact on AF recurrences at 1-year follow-up. These results suggest that antral isolation is sufficient to treat most patients with paroxysmal AF. (Circ Arrhythmia Electrophysiol. 2009;2:113-119.)

Key Words: catheter ablation • paroxysmal atrial fibrillation • pulmonary vein antrum isolation • radiofrequency • randomized study • complex fractionated atrial electrograms or defragmentation

Catheter ablation has been shown to be a successful and effective therapy for the treatment of atrial fibrillation (AF).\(^1\) Although the pulmonary veins (PVs) have been shown to play a major role in the initiation of AF, different ablation strategies, including isolation of the pulmonary veins and ablation of sites outside the pulmonary veins, have been proposed.\(^2\)–\(^7\) However, the relative benefit and success of each approach alone and in combination has not been evaluated in randomized studies.

Clinical Perspective see p 119

We sought to compare the effect of different ablation strategies on the AF termination mode and the long-term success of patients with paroxysmal AF presenting to the...
electrophysiology laboratory (EP laboratory) in AF. We compared pulmonary vein antrum isolation (PVAI) alone, ablation of complex fractionated atrial electrograms (CFAEs), and a hybrid strategy that combines PVAI followed by ablation of complex fractionated atrial electrograms.

Methods

Study Population

We enrolled 103 consecutive patients with paroxysmal AF presenting to the EP laboratory with spontaneous AF. The definition of paroxysmal AF followed the guidelines suggested by the American College of Cardiology/American Heart Association/European Society of Cardiology.

Patients included in this study were enrolled for their first AF ablation by 6 different Institutions in the period between November 2004 and January 2007. Patients were assigned a treatment based on the permuted block strategy. The treatments were balanced within a block size of 3, with the block randomly assigned to each center using a web-based centralized control program. Patients underwent PVAI only (group I, n=35), ablation of CFAEs only (group II, n=34), or a hybrid approach including PVAI plus CFAEs (group III, n=34).

Patients were enrolled if (1) they had a history for at least 1 year of paroxysmal AF, (2) they were refractory to at least 2 antiarrhythmic drugs (AADs), and (3) they presented to the EP laboratory in AF. We enrolled 103 consecutive patients with paroxysmal AF presenting the guidelines suggested by the American College of Cardiology/American Heart Association/European Society of Cardiology. Patients had full access to and take full responsibility for the integrity of the data. All authors have read and agree to the manuscript as written.

Ablation Procedure

All patients discontinued AADs at least 5 half-lives before ablation. Amiodarone therapy was discontinued 6 months before the procedure.

PVAI

PVAI has been described in detail elsewhere.9,10 Briefly, we used a circular mapping catheter (Lasso, Biosense Webster) and a 3.5-mm irrigated tip catheter (ThermoCool) to ablate the antrum of the pulmonary veins (PVs) and to achieve abolition of all electrograms. Intracardiac echocardiogram (ICE) was used to monitor the transseptal puncture and to define the anatomy of the pulmonary veins. An esophageal probe was used to monitor the temperature in the esophagus during ablation.

Radiofrequency energy output was titrated to a maximum of 45 W while maintaining a catheter tip temperature of <41°C. At each site, energy was delivered for 20 seconds. The maximum power over the esophagus and within the coronary sinus (CS) was limited to 30 W, and energy delivery was discontinued when the esophageal temperature probe reached 39°C.

A 3D geometry of the left atrium (LA) was reconstructed with the CARTO system (Biosense Webster) or the NavX system (St Jude Medical) (Figure 1A through 1D). The procedural end point for this ablation strategy was the local elimination of all the pulmonary vein potentials along the antra or inside the veins (entry and exit block). The antrum included the entire posterior wall and extended anteriorly to the right PVs along the left septum. Further ablation of the superior vena cava (SVC) along the right atrium/SVC junction was also performed if mapping revealed PV-like potentials around this region and when high output (30 mA) pacing did not capture the phrenic nerve.10

During ablation, the categories of AF termination (secondary end point) considered have been (1) conversion to sinus rhythm (SR), (2) organization into a regular atrial tachyarrhythmia (AT), with a similar cycle length in both the atria and CS, or (3) persistence of AF requiring cardioversion. When AF organized into an AT, the latter arrhythmia was mapped and ablated.

CFAEs-Only Group (Group II)

CFAEs were defined as (1) atrial electrograms with 2 deflections or more with fractionated baseline complexes with continuous
activity over a 10-second recording time or (2) atrial electrograms with a cycle length \(\leq 120 \) ms over a 10-second recording time. The ablation catheter was required to be in a stable position when recording these electrograms.\(^3\) All operators assessed a sample of CFAEs electrograms to ensure uniformity in selecting ablation sites (Figure 2).

The left and right atria (including the CS) were mapped to identify areas with electric fractionation. These areas were ablated with the open irrigation ablation catheter (same settings parameters as described above for the PVAI group) until the CFAEs were completely eliminated. The CFAEs were first ablated in the LA, then CS and right atrium, respectively. The procedural end point of this ablation strategy was complete elimination of the CFAEs potentials. If AF terminated before elimination of all CFAEs, induction of AF was attempted with pacing on and off isoproterenol (up to 20 \(\mu \)g/min). The categories of AF termination considered have been described above (secondary end point). If AF persisted after elimination of all CFAEs’s sites, cardioversion was used to restore sinus rhythm.

Hybrid Approach: PVAI Followed by Ablation of CFAEs (Group III)

This ablation strategy was a combination of the 2 previously described approaches. PVAI was followed by CFAEs ablation; therefore patients underwent antrum isolation of all pulmonary veins and subsequently the elimination of CFAEs in both atria.

The procedural end point for this strategy was the complete elimination of CFAEs areas and electric isolation of all the PV antra defined by entrance and exit block. If AF terminated before CFAEs ablation or before all CFAEs were ablated, induction of AF was performed with pacing on and off isoproterenol (up to 20 \(\mu \)g/min). Modes of AF termination were the same as in Group I and II (secondary end point). If AF persisted after PVAI plus CFAEs, cardioversion was used to restore sinus rhythm.

Primary End Point

The primary end point of this study for all the ablation strategies was freedom from AF defined as no episodes of AF/AT with or without AADs that lasted more than 1 minute at the 1 year follow-up. Episodes that occurred during the first 2 months (blanking period) after the procedure were not considered as recurrences.

AADs were discontinued in all patients 2 months after the ablation when no recurrences were present. In cases of recurrences, patients were given their previously ineffective AADs. Patients with arrhythmia recurrence 6 months beyond the first procedure and on AADs previously ineffective AADs that lasted more than 1 minute at the 1 year follow-up were offered a repeat ablation.

Postablation Management and Follow-Up

All patients were discharged on warfarin with a target international normalized ratio of 2 to 3 and on AADs previously ineffective, except for amiodarone. Warfarin was continued for a minimum of 6 months after the ablation procedure. They were followed in the outpatient clinic at 3 months after the procedure and then every 3 months. Patients were also given an event recorder for 5 months. They were asked to record 4 times a week even if asymptomatic and anytime they experienced symptoms. A 48-hour Holter monitor was obtained at 3, 6, 9, 12, and 15 months postablation.

Statistical Analysis

A permuted block randomization schedule with block size of 3 was generated using a random number generator. Each permuted block was assigned a number and each block was randomly assigned to a center.

Although Nadamanee et al\(^1\) had reported high success with CFAEs, our initial experience did not agree with his published results. We expected a 50% success rate using a CFAEs-only approach and, based on published results from our experience, we expected an 80% success rate with a PVAI-only approach. Under these assumptions, using a 1-tailed \(\alpha \) of 5% and 80% power, a total of 32 patients would be required.

All continuous data are presented as mean±SD and were compared by Student \(t \) test or by ANOVA. Tukey-Kramer method for multiple comparisons was used to compare the efficacy of the three procedures. The analysis used the intention-to-treat principle. Categorical variables comparison used \(\chi^2 \) analysis. A probability value <0.05 was considered statistically significant.

(SPSS software version 11.0).

Results

Patients Characteristics

Baseline characteristics of the 3 groups are presented in Table 1. No significant difference between groups in term of sex, age, AF duration, LA size, and ejection fraction (EF) was present. Previously ineffective AADs are also reported in Table 1.

Procedural Results

The procedural end point was achieved in all patients (100%) in each group. The total fluoroscopy times of the groups were 65.6±22.6 for group I, 59.9±24.7 for group II, and 76.8±21.8 for group III (\(P=0.8 \)). The duration of radiofrequency applications were 54±11 minutes for group I, 48±9 minutes for group II, and 68±14 minutes for group III (\(P=0.04 \)). The total number of patients with CFAEs ablated and the median number of radiofrequency applications necessary to abolish CFAEs at each right and LA sites are reported in Table 2 (see also Figure 1).

Secondary End Point: AF Termination During Ablation

Organization into atrial tachyarrhythmia was 34% in group I, 16% in group II, and 29% in group III (\(P=0.158 \)), with a mean cycle length 236.8±32.9 ms. Conversion to sinus rhythm was seen in 60% (group I), 17% (group II), and 65%
(group III) of patients, respectively ($P<0.001$). Persistence of AF requiring cardioversion was observed in 6% of group I, 67% of group II, and 6% of group III ($P<0.001$; Table 3).

When AF organized into AT, an attempt to map and terminate the AT during ablation was performed each time. Conversion from an organized flutter/tachycardia to SR was observed in 7 patients in group I, 2 patients in group II, and 6 patients in group III ($P=0.2$). The majority of these ATs were located at the mitral valve level (16 patients) and in the posterior wall (11 patients) as demonstrated by mapping/entrainment around the PVs.

Chronic Follow-Up/Primary End Point

The primary end point of the study is reported in Tables 4 and 5 as freedom from AF/AT after a single procedure with or without AADs at 1 year of follow-up. In group I and group III, freedom from AF/AT after 6 months was observed in 94% of patients (14% requiring AADs), whereas in group II it was 59% (11% requiring AADs; $P<0.001$).

After 1 year follow-up (13.7±2.2 months), in group I and group III, freedom from AF/AT was seen in 89% (15% requiring AADs) and 91% (15% requiring AADs) of patients, respectively, whereas in group II was achieved in 23% (11% requiring AADs) of patients ($P<0.001$; Tables 4 and 5).

The timing for a second procedure was at least 6 months after the first procedure. All 7 patients belonging to group I and III and with primary end point failure accepted a second procedure after 7.1±1.1 months from the first procedure. Six of the 7 patients (86%) demonstrated no further AF/AT at 9±7 months follow-up from the second procedure without any AADs.

Twenty-two patients of the 26 patients of group II failing the primary end point accepted a second procedure after 7.3±1.1 months. These procedures were performed using the PVAI-only approach. After a mean follow-up of 9±7 months from the second procedure, 20 patients (91%) were free from AF/AT without AADs.

Complications

No major complications have been observed in these groups of patients during or after the procedures.

Discussion

Main Findings

This is the first prospective multicenter randomized study comparing 3 ablation techniques in patients with paroxysmal AF. CFAEs ablation alone had the smallest impact on both acute AF termination and freedom from AF/AT at 1-year follow-up. The hybrid strategy, which combines isolation of the PV antra and ablation of CFAEs, was not associated with a better acute success rate (defined as conversion to sinus rhythm) or chronic success rate (defined as event freedom from AF or AT at 6-month and 1-year follow-up), when compared to PVAI alone.

Previous Studies

The pulmonary veins are known for their preponderant role in triggering and maintaining AF. Segmental ostial pulmonary vein isolation maintains sinus rhythm in approximately 2/3 of the patients with paroxysmal AF. Additional lesions such as mitral isthmus ablation or antrum isolation have been reported to increase this success to approximately 90%.

Table 1. Baseline Characteristics and Previous Ineffective AADs

<table>
<thead>
<tr>
<th>Clinical Characteristic</th>
<th>PVAI Only (n=35)</th>
<th>CFAEs Only (n=34)</th>
<th>PVAI+CFAEs (n=34)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>57±8.1</td>
<td>59.9±8.6</td>
<td>58.4±7.5</td>
<td>0.43</td>
</tr>
<tr>
<td>Male, %</td>
<td>83</td>
<td>76</td>
<td>88</td>
<td>0.44</td>
</tr>
<tr>
<td>Hypertension, %</td>
<td>34</td>
<td>38</td>
<td>35</td>
<td>0.51</td>
</tr>
<tr>
<td>AF duration, years</td>
<td>5.3±5.7</td>
<td>5.1±4.1</td>
<td>5.3±5</td>
<td>0.61</td>
</tr>
<tr>
<td>LA size, cm</td>
<td>4.3±0.6</td>
<td>4.1±0.5</td>
<td>4.4±0.6</td>
<td>0.38</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>55.8</td>
<td>55.5±6</td>
<td>54.6±6</td>
<td>0.89</td>
</tr>
<tr>
<td>Previously ineffective AADs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amiodarone</td>
<td>2 (0.5%)</td>
<td>2 (0.5%)</td>
<td>2 (0.5%)</td>
<td>1.0</td>
</tr>
<tr>
<td>Sotalol</td>
<td>14 (40%)</td>
<td>14 (41%)</td>
<td>13 (38%)</td>
<td>0.9</td>
</tr>
<tr>
<td>≥1 class I AADs</td>
<td>21 (60%)</td>
<td>20 (58%)</td>
<td>21 (61%)</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Table 2. Total Number of Patients With CFAEs and Median Number of RF Applications Necessary to Abolish CFAEs at Each Right and Left Atrial Sites

<table>
<thead>
<tr>
<th>CFAEs Sites</th>
<th>Group II (CFAEs Only)</th>
<th>Group III (PVAI+CFAEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LA</td>
<td>RA</td>
</tr>
<tr>
<td>Anterior wall</td>
<td>23/11</td>
<td>9/10</td>
</tr>
<tr>
<td>Posterior wall</td>
<td>34/14</td>
<td>/</td>
</tr>
<tr>
<td>Mitral isthmus</td>
<td>9/6</td>
<td>/</td>
</tr>
<tr>
<td>Posterior annulus</td>
<td>10/7</td>
<td>/</td>
</tr>
<tr>
<td>Appendage</td>
<td>8/6</td>
<td>4/6</td>
</tr>
<tr>
<td>Roof</td>
<td>34/12</td>
<td>/</td>
</tr>
<tr>
<td>Septum</td>
<td>32/9</td>
<td>16/11</td>
</tr>
<tr>
<td>CS</td>
<td>22/11</td>
<td>16/5</td>
</tr>
<tr>
<td>Crista terminalis</td>
<td>/</td>
<td>32/20</td>
</tr>
<tr>
<td>Cavo tricuspid isthmus</td>
<td>/</td>
<td>2/7</td>
</tr>
<tr>
<td>SVC</td>
<td>/</td>
<td>11/3</td>
</tr>
</tbody>
</table>

Right coronary sinus refers to the ostium of the coronary sinus. RF indicates radiofrequency; RA, right atrium.
Table 3. AF Termination Mode During Ablation

<table>
<thead>
<tr>
<th></th>
<th>PVAI Only (n=35)</th>
<th>CFAEs Only (n=34)</th>
<th>PVAI+CFAEs (n=34)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>21 (60%)</td>
<td>6 (17%)</td>
<td>22 (65%)</td>
<td><0.001</td>
</tr>
<tr>
<td>AT</td>
<td>12 (34%)</td>
<td>5 (16%)</td>
<td>10 (29%)</td>
<td>0.158</td>
</tr>
<tr>
<td>No AF termination</td>
<td>2 (6%)</td>
<td>23 (67%)</td>
<td>2 (6%)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

AT, atrial tachyarrhythmia, including atrial flutter.

Table 4. Freedom From AF/AT at 6-Month and 1-Year Follow-Up (13.7±2.2 Months)

<table>
<thead>
<tr>
<th></th>
<th>PVAI Only (n=35)</th>
<th>CFAEs Only (n=34)</th>
<th>PVAI+CFAEs (n=34)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freedom from AF/AT after 6-month follow-up*</td>
<td>33 (94)</td>
<td>20 (59)</td>
<td>32 (94)</td>
<td><0.001</td>
</tr>
<tr>
<td>Freedom from AF/AT after 1-year follow-up*</td>
<td>31 (89)</td>
<td>8 (23)</td>
<td>31 (91)</td>
<td><0.001</td>
</tr>
<tr>
<td>Freedom from AF/AT after 1-year follow-up without AADs</td>
<td>26 (74)</td>
<td>4 (12)</td>
<td>26 (76)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Data are presented as n (%). *With or without AADs.
driven by empirical targeting of fragmented electrogams but by mapping triggers disclosed with administration of isoproterenol or adenosine. Several other groups have shown that ablation strategies encompassing the areas equivalent to the antrum achieve similar results and are better than more limited approaches.18–20

Study Limitations

Methods to identify CFAEs, although similar to the ones described by Nademanee,3 may be operator-dependent because they are based on visual evaluation. Software analysis tools to identify CFAEs were not used in our study. However, Scherr et al21 demonstrated a high correlation between software and visual identification of the CFAEs areas. In addition, the initial description of defragmentation relied on visual identification of fragmented electrogams.

Using a fixed block size of 3, it is possible to determine the assignment of the third patient in the block before randomization. However, in a study such as this, the operators cannot be blinded to the procedural end points, because they had to know the type of procedure to perform. In addition, the physicians performing the procedures were not involved in patient’s recruitment and the outcome at follow-up was based on the objective documentation of freedom from AF/AT.

Finally, the study was underpowered to detect a difference between PVAI alone versus CFAEs plus PVAI; taking into account the adjustment for multiple comparisons with a family-wise error rate ≤0.05, the sample size required to provide 80% power to detect a difference of 5% (comparing 85% to 90%) between any 2 groups is 353 patients per group. Although we acknowledge the statistical limitations, we deem that the data presented in this study would serve as an important reference point for future studies comparing the efficacy of PVAI plus CFAEs procedures.

Conclusions

Ablation of the CFAEs alone had the smallest impact on both acute AF termination and 1-year follow-up success rate in patients with paroxysmal AF. No difference in terms of acute and chronic success rates was observed between PVAI alone and PVAI associated with defragmentation (CFAEs) ablation. These results suggest that antral isolation or equivalent strategies are sufficient to treat most patients with paroxysmal AF.

Acknowledgments

The authors thank Prasant Mohanty, MBBS, MPH, for providing valuable input in the statistical analysis performed for the study.

Disclosures

Drs Martin, Wang, Al-Ahmad, Schweikert, Burkhardt, and Natale report receiving compensation from St Jude Medical for participation in speaker’s bureaus. Drs Wang, Al-Ahmad, Schweikert, and Natale report receiving compensation from Boston Scientific for participation in speaker’s bureaus. Drs Khaykin, Wang, Al-Ahmad, Schweikert, Raviele, and Natale report receiving compensation from Medtronic for participation in speaker’s bureaus. Drs Khaykin, Schweikert, Burkhardt, and Natale report receiving compensation from Biosense Webster for participation in speaker’s bureaus. Dr Wang reports receiving compensation from Hansen Medical and Lifewatch for participation in speaker’s bureaus. Dr Al-Ahmad reports serving as a consultant/advisory board to Lifewatch EBR Medical, CyberHeart. Drs Themistoclakis, Bonso, and Schweikert report serving as a consultant/advisory board to Biosense Webster. Dr Al-Ahmad reports participation in a research grant from Siemens. Dr Natale reports participation in a research grant from St Jude Medical. Dr Martin reports serving as a consultant/advisory board to Boston Scientific and as an advisory board member for Medtronic. Dr Burkhardt reports serving as consultant/advisory board to Stereotaxis.

References

Whether different ablation strategies affect paroxysmal atrial fibrillation (AF) long-term freedom from AF/atrial tachyarrhythmia (AT) is unclear. This study compared 3 different ablation approaches on the long-term success rate in patients with paroxysmal AF. This is the first prospective study comparing 3 ablation techniques in patients with paroxysmal AF. Complex fractionated atrial electrogram (CFAEs) ablation alone had the smallest impact on the freedom from AF/AT at 1-year follow-up. The hybrid strategy, which combines isolation of the pulmonary vein antrum and ablation of CFAEs, was not associated with a better success rate, defined as event freedom from AF or AT at 6-month and 1-year follow-up when compared with pulmonary vein antrum isolation alone. This study reinforces the concept that electric isolation of all the pulmonary veins remains a cornerstone for catheter ablation of paroxysmal AF. The results of this study also indicate that CFAEs ablation alone should not be considered as an alternative strategy for paroxysmal patients but should be reserved only for selected patients, unless a better identification of critical CFAEs zones becomes widely available and proven effective.

CLINICAL PERSPECTIVE

Atrial Fibrillation Ablation Strategies for Paroxysmal Patients: Randomized Comparison Between Different Techniques
Luigi Di Biase, Claude S. Elayi, Tamer S. Fahmy, David O. Martin, Chi Keong Ching, Conor Barrett, Rong Bai, Dimpi Patel, Yaariv Khaykin, Richard Hongo, Steven Hao, Salwa Beheiry, Gemma Pelargonio, Antonio Dello Russo, Michela Casella, Pietro Santarelli, Domenico Potenza, Raffaele Fanelli, Raimondo Massaro, Paul Wang, Amin Al-Ahmad, Mauricio Arruda, Sakis Themistoclakis, Aldo Bonso, Antonio Rossillo, Antonio Raviele, Robert A. Schweikert, David J. Burkhardt and Andrea Natale

Circ Arrhythm Electrophysiol. 2009;2:113-119; originally published online February 18, 2009; doi: 10.1161/CIRCEP.108.798447

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circep.ahajournals.org/content/2/2/113