Characterization, Mapping, and Catheter Ablation of Recurrent Atrial Tachycardias After Stepwise Ablation of Long-Lasting Persistent Atrial Fibrillation

Thomas Rostock, MD; Imke Drewitz, MD; Daniel Steven, MD; Boris A. Hoffmann, MD; Tushar V. Salukhe, MCRP, MD; Karsten Bock, MD; Helge Servatius, MD; Muhammet Ali Aydin, MD; Thomas Meinertz, MD; Stephan Willems, MD

Background—Atrial tachycardias (AT) often occur after ablation of long-lasting persistent AF (CAF) and are difficult to treat conservatively. This study evaluated mechanisms and success rates of conventional mapping and catheter ablation of recurrent ATs occurring late after stepwise ablation of CAF.

Methods and Results—A total of 320 patients underwent de novo ablation of CAF using a stepwise ablation approach in 2006 to 2007 at our institution. This study comprised patients who presented with recurrent ATs at their first redo procedure after initial de novo CAF ablation. All procedures were guided by conventional mapping techniques exclusively. Sixty-one patients (63±10 years, 14 women) presented with their clinical AT at their redo procedure 7.7±4.4 months after initial de novo CAF ablation. A total of 133 ATs (2.2±0.9 per patient) were mapped. Forty-four (72%) were due to reentry; 17 (28%) were focal ATs. Reentry ATs were mainly characterized as roof and perimitral flutter (43% and 34%, respectively). Focal ATs mainly originated from the great thoracic veins (pulmonary veins: 41%, coronary sinus: 23%). Forty-five (74%) patients had conduction recovery of at least 1 pulmonary vein (mean, 1.2±0.8). Overall, 124 (93%) ATs could be ablated successfully. The mean procedure duration was 181±59 minutes, with a mean fluoroscopy time of 45±21 minutes. After a mean follow-up of 21±4 months, 50 (82%) patients were free of any arrhythmia recurrences after a single redo procedure.

Conclusions—Although late recurrent ATs may have complex mechanisms, catheter ablation guided exclusively by conventional techniques is highly effective with excellent acute and long-term success rates.

Catheter ablation of long-lasting persistent atrial fibrillation (CAF) using the stepwise ablation approach requires sequential identification and elimination of arrhythmogenic sources and substrates in both atria and the great thoracic veins to achieve AF termination.1–4 Because the vast majority of patients convert to an atrial tachycardia (AT) upon AF termination, ablation of these subsequent organized arrhythmias is an integral part of the procedure in an effort to achieve sinus rhythm. It is still a matter of debate whether subsequent ATs occur as a proarrhythmic consequence of the ablation itself or if they reflect unmasked drivers contributing to the global arrhythmogenic processes of CAF.5,6 Irrespective of its electrophysiological causes, there often is a therapeutic imperative for catheter ablation of subsequent ATs because patients have more debilitating symptoms due to a fast ventricular response that is difficult to manage pharmacologically, and moreover, ATs often recur after cardioversion.7 Thus, the aim of this study was first, to characterize electrophysiological mechanisms of ATs that occur after stepwise ablation of CAF and second, to evaluate the success rates of catheter ablation for late recurrent ATs guided exclusively by conventional mapping techniques.

Clinical Perspective on p 169

Study Population
A total number of 320 patients underwent de novo ablation of CAF using the stepwise ablation approach in 2006 to 2007 at our institution. Of these, 93 (29%) patients had recurrence of AF, 128 (40%) recurrence of AT, and 99 (31%) were in sinus rhythm. There were no baseline differences in demographics, comorbidities, and cardiac function and dimensions between patients with AT and AF.
process perpetuating CAF. These were targeted in both atria and the coronary sinus (CS), according to the respective arrhythmia response to ablation as characterized by local cycle length behavior. In the event of termination of CAF to an AT, these were also targeted for further ablation in an effort to achieve sinus rhythm in all patients through ablation only.

Electrophysiological Study

All patients underwent transesophageal echocardiography within 24 hours before the procedure to exclude atrial thrombi. The procedure was performed under sedation with propofol and under continuous monitoring of blood pressure and saturation.

Surface ECGs and bipolar endocardial electrograms were continuously monitored and stored on a computer-based digital amplifier/recorder system (Bard Electrophysiology, Lowell, Mass).

The following catheters were introduced via a femoral vein access: (1) A steerable decapolar catheter (Inquiry, IBI, Irvine Biomedical, Inc, Irvine, Calif) was positioned within the CS; (2) a circumferential decapolar diagnostic catheter (Lasso, Biosense-Webster, Diamond Bar, Calif) for mapping of the PVs; (3) a nonsteerable quadripolar diagnostic catheter (Inquiry, IBI, Irvine Biomedical, Inc) was placed in the right atrial appendage; and (4) a 3.5-mm externally irrigated-tip ablation catheter (Biosense-Webster) was used for mapping and ablation. The Lasso and ablation catheter were stabilized with long sheaths (SL0, Daig Inc, St Jude Medical, St Paul, Minn) continuously flushed with heparinized saline solution. Access to the LA was achieved by a single transseptal puncture with the 2 catheters placed into the left atrium via the same puncture. A single bolus of 50 IU/kg body wt heparin was administered after transseptal puncture. The activated clotting time was assessed every 30 minutes and maintained within a range of 250 to 300 seconds.

Conventional Mapping and Ablation of AT

PV Reisolation

As a first step, all PVs were mapped with a circumferential mapping catheter and reisolated in case of electric recovery. PV reisolation was performed during AT in all patients with reconnection. For appropriate mapping of single gaps in the circumferential lesion around the ipsilateral PVS, the circumferential mapping catheter was placed sequentially in the superior and inferior ipsilateral veins to assess the earliest activation.

After PV reisolation, the circumferential mapping catheter was placed into the left atrial appendage (LAA) with the catheter shaft positioned at the superior aspect of the LAA. This catheter then was also used for entrainment and activation mapping.

Differentiation Between Reentry and Focal AT

The following AT characteristics were used to differentiate between focal and reentry mechanisms: (1) tachycardia cycle length variation >15% is in favor of a focal mechanism7,10; (2) stable AT cycle lengths and consistent return cycle lengths in response to overdrive pacing at different pacing sites is indicative for a reentrant mechanism (see below); (3) the presence of a significant isoelectric line in between the P-waves in all 12 ECG leads was suggested to indicate a focal origin.11,12 However, it does not indicate a focal mechanism, for example, automaticity or triggered activity.

Entrainment Mapping

Entrainment mapping was performed with a voltage twice the diastolic threshold and a pulse width of 1.0 ms. In the LA, at least 6 different sites were paced by using the Lasso catheter and the roving mapping catheter (roof, septal, inferior, lateral, posterior, and anterior). Entrainment mapping was then continued in the distal and proximal CS, the right atrial appendage (CAA) and the cavotricuspid isthmus, when appropriate. Each site was paced at least twice to ensure consistency. In case of consistent pacing intervals, the site with the shortest return cycle (usually <20 ms longer than the tachycardia cycle length) was considered to be an integral part of the AT circuit (Figure 1). In ATs with significant cycle length variation, tachycardia overdrive pacing was performed to identify the site with

Table 1. Baseline Characteristics of Patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>63±10</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>14 (23)</td>
</tr>
<tr>
<td>AF history, mo</td>
<td>61±29</td>
</tr>
<tr>
<td>LA diameter, mm</td>
<td>48±5</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>58±9</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>51 (84)</td>
</tr>
<tr>
<td>Coronary artery disease, n (%)</td>
<td>9 (15)</td>
</tr>
<tr>
<td>Valvular heart disease, n (%)</td>
<td>5 (8)</td>
</tr>
<tr>
<td>Congestive heart failure, n (%)</td>
<td>4 (7)</td>
</tr>
</tbody>
</table>

LVEF indicates left ventricular ejection fraction.
the shortest postpacing interval that was considered to be in a close proximity to the AT focus.13

Activation Mapping

According to the information gained from the previous steps, confirmation of the assumed mechanism was attempted by conventional activation mapping. For macroreentrant ATs, the entire tachycardia cycle length should be demonstrated within the chamber to which it is confined and around the central obstacle of the circuit, for example, the mitral annulus in the case of perimital flutter. In ATs caused by localized reentry, most of the tachycardia cycle length can usually be observed traversing the 2 bipole of the mapping catheter (Figure 2) and centrifugal activation spreading from this site can be demonstrated. However, in contrast to most focal ATs, localized reentrant ATs can be entrained with consistent postpacing intervals (Figure 2). Focal ATs were mapped by assessing the earliest endocardial activation in relation to P-wave onset. In cases in which the P-wave was superimposed by ventricular repolarization, AV block was induced by adenosine and the intracardiac electrogram with the closest activation to P-wave onset was determined and used for temporal mapping.

Procedure End Point

The end point of the procedure was termination of AT(s) by ablation to sinus rhythm and noninducibility of any atrial tachyarrhythmia. Inducibility was tested exclusively by burst pacing from 2 different pacing sites. If the clinical AT converted to a different AT or in case of an induction of another AT, the ablation was continued aiming at termination to sinus rhythm. The mapping protocol is schematically presented in Figure 3.

Follow-Up

All patients were seen regularly every 3 months in our outpatient clinic. Before visits, the patients received at least 2 Holter ECGs and additional 12-lead ECGs performed by their referring physicians. Seven-day Holter monitors were not routinely obtained. A detailed history of the patients’ symptoms suggestive for potential AT recurrences was taken.

Antiarrhythmic drug treatment, including amiodarone, was discontinued after each procedure in all patients. Patients with more than 1 recurrence of AT were scheduled for a redo procedure and antiarrhythmic drug treatment was reinitiated, if not contraindicated, to bridge the time to the procedure.

Statistical Analysis

Continuous data are given as mean±SD and range in brackets. Comparison between groups was carried out using either the Student t test (ie, reentry versus focal ATs and epidemiological parameters of patients with 1 versus >1 AT). The Wilcoxon rank-sum test was used for the comparison of the index procedural data of patients with 1 versus >1 AT. A 2-tailed probability value <0.05 was considered significant.

Results

Procedural Data

The procedure was performed at a mean of 7.7±4.4 (3 to 20) months after the IP for CAF. All patients had at least 1
Figure 2. Tracings show an AT with a cycle length of 250 ms that is characterized by high-fractionated potentials covering almost the entire AT cycle length in the 2 bipoles of the mapping catheter, which is placed at the anterior ridge of the left atrial appendage (LAA) (A). Of note, the local fractionated potentials do not have a low voltage and demonstrate rather normal (healthy) electrogram amplitudes. B, Entrainment mapping at the anterior ridge of the LAA is reproducibly associated with a perfect return cycle. Importantly, the first fractionated potential after the last stimulus does not reflect the postspacing interval but represents the last paced electrogram that occurs with a long local activation delay. C, Results from entrainment mapping at the given pacing sites in the atria. D, A single radiofrequency application at the presented site resulted in progressive prolongation of the AT cycle length and termination to sinus rhythm after 16 seconds.
attempt to treat the AT conservatively by cardioversion. In 10 patients, amiodarone therapy was reinitiated and continued until the redo procedure. In 18 patients, a treatment with class I-C antiarrhythmics was reinitiated but discontinued in all after at least 2 AT recurrences. Eleven patients received β-blockers for ventricular rate control. The remaining 22 patients were left without antiarrhythmic treatment until the redo procedure. Although it was not predetermined by the study protocol, no patient underwent ablation for AT within the first 3 months after the index procedure. A mean of 2.2±0.9 (1 to 5) ATs per patient were mapped, with an overall number of 133 ATs. The mean procedure duration was 181±59 (60 to 310) minutes with a mean fluoroscopy time of 45±21 (6 to 102) minutes.

PV Conduction Recovery and PV-Related ATs

Electric conduction recovery of at least 1 PV was observed in 45 (74%) patients, with a mean of 1.6±0.5 PVs per patient. There was no significant difference in the incidence of electric reconduction between PVs (left superior PV, 22%; left inferior PV, 20%; right superior PV, 22%; right inferior PV, 32%). However, en bloc recovery of ipsilateral PVs was more often observed for the right as compared with the left veins (left PVs, 2% versus right PVs, 20%).

In 7 (11%) patients, the clinical AT was related to a recovered PV and terminated during reisolation. These ATs had a mean cycle length of 270±40 ms. Only 2 terminated directly to sinus rhythm, whereas the remaining 5 patients converted to a different AT. One patient with AT termination
during PV reisolation did not have a PV tachycardia but the electrically reconnected left inferior PV served as the critical gap for perimital flutter (Figure 4).

Mechanisms and Ablation of Clinical ATs

During the first ablation procedure for AF, left atrial linear ablation had been performed in 23 (38%) patients with 13 mitral isthmus lines and 17 roof lines (2 lines in 7 patients). Of these, 9 (69%) mitral isthmus lines and 14 (82%) roof lines were successfully blocked. In the remaining attempted linear ablation, completeness of the lines could not be achieved or evaluation of the line failed (eg, in the case of CS isolation).

After this first ablation procedure, the clinical AT recurred after cardioversion, persisted over at least several days before the electrophysiological study and was present at the beginning of the procedure in all 61 study patients. The mean cycle length of the clinical AT was 274±41 ms. The majority of them were due to reentry, and less than one third had a focal mechanism. Notably, the “common types” of right and left atrial macro-reentrant ATs constituted more than 90% of all clinical ATs with a reentry mechanism, whereas focal ATs predominantly originated from the PVs and the coronary sinus. In 4 patients, adenosine was administrated to unmask P-wave morphology without changing or terminating the AT. There was no significant difference in the mean cycle length of reentrant as compared with focal ATs (275±40 ms versus 271±46 ms, \(P = \text{NS} \)). Details regarding AT mechanisms, incidence, and cycle lengths are presented in Table 2.

Termination of the clinical AT by ablation was achieved in 60 (98%) patients. In 1 patient, the AT could not be identified accurately during a procedure of 260 minutes with a fluoroscopy time of 59 minutes, and consequently electrical cardioversion was performed. In only 16 (26%) patients, successful ablation of

![Flowchart of the mapping protocol](http://circep.ahajournals.org/)

![Atrial tachycardia of a patient with a bidirectionally blocked mitral isthmus line during the index procedure for CAF. The AT is characterized by negative inferior P-waves and a positive P-wave in V1. The posterior and superior aspect of the left inferior (LI) PV is activated passively with a Wenckebach periodicity (LS 6/7 to LS 9/10). The anterior part of the vein (LS 1/2 to LS 5/6) shows 1:1 conduction but is also passively activated as indicated by an earlier activation of the LAA far-field potential in relation to the PV potential. Isolation of the anterior aspect of the LIPV results in termination of the AT. LAA pacing performed after AT termination confirmed isolation of the LIPV at the anterior aspect and the remaining anterior potential as a far-field potential originating from the LAA. Thus, along with a postspacing interval of ±10 ms at the anterior aspect of the LIPV, the diagnosis of a peri-mitralf flutter with the LIPV serving as the critical conduction gap could be confirmed. Notably, the posterior and superior part, which was activated with a functional conduction block, is still conducted but shows a long activation delay with the PV potentials activated at the time of the ventricles.](http://circep.ahajournals.org/)
Mechanisms and Ablation of Subsequent ATs
Among the 45 patients who converted to a different AT after termination of the clinical AT, a total number of 72 ATs were mapped (Figure 5). The mean cycle length of these subsequent ATs was 343 ± 77 (240 to 700) ms. Similar to the clinical ATs, the majority of these subsequent ATs also had a reentrant mechanism (47 [65%] versus 25 [35%]). In contrast to the clinical ATs, the majority of these subsequent ATs also had a reentrant mechanism (47 [65%] versus 25 [35%]). In contrast to the clinical ATs, subsequent ATs due to reentry had a significantly shorter mean tachycardia cycle length as compared to the clinical ATs, subsequent ATs due to reentry had a reentrant mechanism (47 [65%] versus 25 [35%]). In contrast to the clinical ATs, a total number of 72 ATs were mapped (Figure 5). The mean cycle length of these subsequent ATs was 343 ± 77 (240 to 700) ms. Similar to the clinical ATs, a total number of 72 ATs were mapped (Figure 5). The mean cycle length of these subsequent ATs was 343 ± 77 (240 to 700) ms. Similar to the clinical ATs, the majority of these subsequent ATs also had a reentrant mechanism (47 [65%] versus 25 [35%]). In contrast to the clinical ATs, the majority of these subsequent ATs also had a reentrant mechanism (47 [65%] versus 25 [35%]).

Reentrant ATs (44 [72%])

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>n (%)</th>
<th>Mean CL, ms</th>
<th>CL Range, ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof flutter</td>
<td>19 (43)</td>
<td>272 ± 35</td>
<td>220–360</td>
</tr>
<tr>
<td>Perimital flutter</td>
<td>15 (34)</td>
<td>278 ± 40</td>
<td>230–340</td>
</tr>
<tr>
<td>CTI flutter</td>
<td>6 (14)</td>
<td>258 ± 15</td>
<td>240–280</td>
</tr>
<tr>
<td>LAA microentry</td>
<td>4 (9)</td>
<td>318 ± 52</td>
<td>250–370</td>
</tr>
</tbody>
</table>

Focal ATs (17 [28%])

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>n (%)</th>
<th>Mean CL, ms</th>
<th>CL Range, ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovered PV</td>
<td>7 (41)</td>
<td>270 ± 42</td>
<td>220–320</td>
</tr>
<tr>
<td>Coronary sinus</td>
<td>4 (23)</td>
<td>300 ± 45</td>
<td>240–350</td>
</tr>
<tr>
<td>LA roof</td>
<td>2 (12)</td>
<td>257 ± 47</td>
<td>220–310</td>
</tr>
<tr>
<td>LA inferior</td>
<td>2 (12)</td>
<td>227 ± 6</td>
<td>220–230</td>
</tr>
<tr>
<td>RA septum</td>
<td>2 (12)</td>
<td>292 ± 50</td>
<td>220–350</td>
</tr>
</tbody>
</table>

CL indicates cycle length.

The present study demonstrates 5 key observations about the mechanisms of recurrent ATs that present late after successful stepwise ablation of CAF. First, only a small proportion of recurrent ATs is dependant on or related to reconnected PVs. Second, the majority of clinical ATs have a reentrant mechanism with "common" types of left or right atrial macroreentrant circuits but rarely result from recovered substrates that had been previously ablated. Third, the clinical ATs could be ablated successfully in almost all patients. Fourth, nearly three fourths terminated by conversion to another AT and not directly to sinus rhythm, indicating that the majority of

Figure 5. Flowchart of the course of the index procedure for AT.
patients do have a substrate for multiple rather than a single AT. Interestingly, the majority of these subsequent ATs were localized to relatively atypical anatomic regions and distributed throughout both atria. Finally, catheter ablation guided exclusively by conventional mapping techniques is an effective treatment with high immediate and long-term success rates in patients with recurrent ATs.

Assessment of Mechanisms and Localization of ATs Using Conventional Mapping Techniques

In previous studies that evaluated mechanisms of subsequent ATs and the efficacy of catheter ablation, the procedures were performed under the guidance of a 3D mapping system.9,12,14–17 Although the use of an electroanatomic mapping system may help to understand the arrhythmia by its visualization on a virtual anatomy, it has the disadvantage that individual maps are required for each AT. This can be laborious and time consuming with the result of prolonged procedure times, particularly in case of multiple ATs.

Therefore, Jais et al11 proposed a new mapping algorithm for subsequent ATs occurring immediately after CAF termination. With a deductive mapping strategy, the mean diagnostic time could be reduced to an impressive 10 minutes per AT. In their approach, AT cycle length stability was assessed as the first step, followed by a detailed activation map to delineate the propagation direction of the AT. Afterward, entrainment mapping at the deduced critical site of the AT was used to confirm the diagnosis as the final step before ablation was attempted. In our study, the combination of a detailed entrainment and activation mapping was used. The additional detailed entrainment mapping has the potential to gain information on the arrhythmia mechanism, for example, by observing inconsistent postpacing responses at a single pacing site in case of focal AT. This is particularly useful when focal AT appear to have stable cycle lengths. Furthermore, the length and range of variation of the postpacing interval provides information about the distance of the pacing site to the AT focus.13 Although these pacing maneuvers have the potential to terminate or convert the interrogated AT, such counterproductive entrainment is rarely observed in clinically stable ATs and is more likely in ATs occurring immediately after termination of CAF by ablation.11

Mechanisms of Subsequent and Recurrent ATs

The electrophysiological complexity of CAF is also reflected in the multiple and multifaceted types of recurrent ATs occurring late after ablation. Its incidence ranges from 4% to 40% after a single procedure for CAF.2,3,18 It is plausible that the mechanism of AT is a direct consequence of the greater amount and location of ablation applied during CAF ablation compared with ablation for shorter-lived AF. This is evidenced by the observation that AT occurring after circumferential PVI for paroxysmal AF are predominantly LA macroreentry and rarely focal, whereas those occurring after CAF ablation involve several mechanisms including focal, macroreentry, and microreentry.2,3,9,11,15–17

One observation in this study was that tachycardia cycle lengths did not depend on mechanism or, in the case of reentrant ATs, on the diameter of the tachycardia circuit. Thus, the accurate identification of the AT mechanism can be challenging and usually requires detailed mapping, particularly in case of non–macroreentrant AT that can be localized to virtually all aspects of the atria and thoracic veins. Although “common types” of left ATs are often easier to identify, its appropriate treatment with the achievement of bidirectionally blocked lines may be more demanding for the operator,19,20 whereas focal and microreentrant ATs usually require discrete ablation at a critical spot.1,2,21

Table 3. Data of Subsequent ATs to Which Patients Converted After Termination of the Clinical AT

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Reentrant ATs (47 [65%])</th>
<th>Focal ATs (25 [35%])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coronary sinus</td>
<td>7 (28)</td>
<td>363±108</td>
</tr>
<tr>
<td>LA inferior</td>
<td>6 (24)</td>
<td>382±88</td>
</tr>
<tr>
<td>RA anterior</td>
<td>4 (16)</td>
<td>428±197</td>
</tr>
<tr>
<td>LAA</td>
<td>2 (8)</td>
<td>265±7</td>
</tr>
<tr>
<td>RA septum</td>
<td>2 (8)</td>
<td>355±35</td>
</tr>
<tr>
<td>LA roof</td>
<td>2 (8)</td>
<td>380±170</td>
</tr>
<tr>
<td>LA septal flutter</td>
<td>1 (2)</td>
<td>270</td>
</tr>
<tr>
<td>SVC</td>
<td>1 (4)</td>
<td>340</td>
</tr>
</tbody>
</table>

CL indicates cycle length; CTI, cavotricuspid isthmus; SVC, superior vena cava.

Table 4. Statistical Comparison of Epidemiological Characteristics and Procedural Data of the Index Procedure for Long-Lasting Persistent Atrial Fibrillation Between Patients With a Single AT and Patients With Multiple ATs

<table>
<thead>
<tr>
<th></th>
<th>Patients With 1 AT</th>
<th>Patients With >1 AT</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>65±10</td>
<td>62±10</td>
<td>0.329</td>
</tr>
<tr>
<td>LA diameter, mm</td>
<td>49±7</td>
<td>48±4</td>
<td>0.626</td>
</tr>
<tr>
<td>LVEF, %</td>
<td>60±10</td>
<td>57±9</td>
<td>0.121</td>
</tr>
<tr>
<td>AF history, mo</td>
<td>56±32</td>
<td>63±28</td>
<td>0.175</td>
</tr>
<tr>
<td>Proc interval, mo</td>
<td>10±4</td>
<td>7±4</td>
<td>0.021*</td>
</tr>
<tr>
<td>IP No. of RFC, n</td>
<td>64±27</td>
<td>61±12</td>
<td>0.686</td>
</tr>
<tr>
<td>IP duration, min</td>
<td>286±85</td>
<td>265±57</td>
<td>0.743</td>
</tr>
<tr>
<td>IP fluoro, min</td>
<td>81±26</td>
<td>75±13</td>
<td>0.832</td>
</tr>
</tbody>
</table>

LVEF indicates left ventricular ejection fraction; proc interval, interval between the index procedure for long-lasting persistent AF and the first redo procedure for AT.

*P<0.05.
The Electrophysiological Genesis of Subsequent and Recurrent ATs

The wealth of data describing different approaches to CAF ablation universally report that ATs are an inevitable consequence of ablation in a large subset of patients.\(^5,11,12,15,18,22\) Two mechanistic hypotheses have evolved to explain this phenomenon. The proarrhythmic hypothesis suggests ablation lesion and scar formation form the substrate for subsequent and recurrent AT, whereas it is hypothesized that successful ablative treatment of AF only “unmasks” the underlying culprit AT. Although the proarrhythmic theory may be more intuitive and perhaps the more widely favored, there is growing evidence for a contributing role of AT in the AF process.\(^5,21,22\)

A recent study investigating a potential pathophysiological link between CAF and recurrent ATs using spectral analysis to characterize CAF and ATs, demonstrated that the frequency of subsequent ATs often overlapped with spectral components of the baseline AF periodogram.\(^5\) Also in keeping with the “unmasking” process is the observation that subsequent ATs also occur at areas that have not been targeted for any ablation previously.\(^21,22\)

In the present study, the majority of patients converted to relatively uncommon types of ATs after termination of the clinical AT. These ATs mainly constituted of small reentrant circuits and were distributed throughout the atria, particularly in the LA. Although this observation may favor the proarrhythmic hypothesis, it is also plausible that the diseased substrate in CAF provides the milieu for such ATs that are clinically masked by a coexisting or consequential fibrillatory process. We therefore compared epidemiological parameters and the procedural data of the index CAF ablation of patients with a single AT (mainly common macroreentry) with patients who had multiple ATs (mainly localized reentry and focal). If the latter depend on a more diseased and progressed AF substrate (favoring the AF contributor hypothesis), one would expect more severe changes of echocardiographic parameters and a longer history of AF in this group. Conversely, if multiple ATs was the result of a more extended ablation (favoring the AF proarrhythmic hypothesis), this group should have been exposed to greater radiofrequency ablation time. We found no differences in epidemiological parameters or ablation time between groups and could not favor one hypothesis over another.

Regardless of cause, the appropriate treatment of AT is required for an arrhythmia-free follow-up. Whether all subsequent and/or induced ATs occurring after successful ablation of the clinical AT should be targeted for further ablation as part of “appropriate treatment” remains an open question. However, 2 important findings in the current study are in favor of treating all encountered ATs: First, patients who have had stepwise ablation for CAF are susceptible to multiple (rather than single) ATs, and second, targeting all ATs for ablation leads to very favorable results.

Conclusion

The majority of recurrent ATs occurring late after stepwise ablation of CAF have a reentrant mechanism including macroreentry and small localized circuits. Although widely distributed throughout the atria and thoracic veins, these recurrent ATs can be treated effectively by conventional mapping and ablation with excellent acute and long-term success rates. Further studies are needed to extrapolate the electrophysiological and substrate basis of the cause of subsequent and recurrent ATs, which would also enhance our understanding of the mechanisms operating in CAF.

Sources of Funding

Dr Salukhe is supported by the British Heart Foundation FS/09/018/26963.

Disclosures

None.

References

12. Shah D, Sunthon H, Burri H, Gentil-Baron P, Pruovt E, Schlaepfer J, Fromer M, Narrow, slow-conducting isthmus dependent left atrial reentry developing after ablation for atrial fibrillation: ECG characterization and

CLINICAL PERSPECTIVE.

Recurrent atrial tachycardia (AT) is a common clinical observation after complex catheter ablation procedures for long-lasting persistent atrial fibrillation (CAF). Conservative treatment is often insufficient to prevent AT recurrences after cardioversion. Thus, curative interventional treatment may be the most desired option. In this article, we report on 61 patients with drug-refractory, recurrent ATs. This cohort was selected out of 320 CAF patients who initially had 1 index stepwise ablation of CAF. All included patients presented with their clinical AT at electrophysiological study. During electrophysiological study, conventional electrophysiological techniques were used to map and ablate the AT. In the reported patient population, the vast majority of clinical ATs did not depend on recovered conduction from the pulmonary veins but rather on typical macroreentrant mechanisms with well-recognized flutter circuits, for example, perimitral or roof-dependent. Three fourths of the patients converted to another AT rather than terminating directly to sinus rhythm after ablation of the clinical AT, thus suggesting an underlying substrate susceptible to multiple ATs in these patients. Interestingly, the electrophysiological mechanisms of subsequent ATs occurring after termination of the clinical AT demonstrated markedly different features, for example, localized reentry and focal AT. Subsequent ablation of all spontaneous and inducible ATs resulted in a favorable outcome, with >80% of patients being free of arrhythmia recurrences during a follow-up of approximately 2 years. Thus, interventional treatment of recurrent AT after stepwise ablation of CAF is very successful and should be considered when conservative therapeutic options fail.
Characterization, Mapping, and Catheter Ablation of Recurrent Atrial Tachycardias After Stepwise Ablation of Long-Lasting Persistent Atrial Fibrillation
Thomas Rostock, Imke Drewitz, Daniel Steven, Boris A. Hoffmann, Tushar V. Salukhe, Karsten Bock, Helge Servatius, Muhammet Ali Aydin, Thomas Meinertz and Stephan Willems

Circ Arrhythm Electrophysiol. 2010;3:160-169; originally published online February 4, 2010; doi: 10.1161/CIRCEP.109.899021
Circulation: Arrhythmia and Electrophysiology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3149. Online ISSN: 1941-3084

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circep.ahajournals.org/content/3/2/160

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Arrhythmia and Electrophysiology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Arrhythmia and Electrophysiology is online at:
http://circep.ahajournals.org//subscriptions/