A Novel Lead Configuration for Optimal Spatio-Temporal Detection of Intracardiac Repolarization Alternans

Eric H. Weiss, MS; Faisal M. Merchant, MD; Andre d’Avila, MD, PhD; Lori Foley, BS; Vivek Y. Reddy, MD; Jagmeet P. Singh, MD, PhD; Theofanie Mela, MD; Jeremy N. Ruskin, MD; Antonis A. Armoundas, PhD

Background—Electric alternans is a pattern of variation in the shape of ECG waveform that occurs every other beat. In humans, alternation in ventricular repolarization, known as repolarization alternans (RA), has been associated with increased vulnerability to ventricular tachycardia/fibrillation and sudden cardiac death.

Methods and Results—This study investigates the spatio-temporal variability of intracardiac RA and its relationship to body surface RA in an acute myocardial ischemia model in swine. We developed a real-time multichannel repolarization signal acquisition, display, and analysis system to record ECG signals from catheters in the right ventricle, coronary sinus, left ventricle, and epicardial surface before and after circumflex coronary artery balloon occlusion. We found that RA is detectable within 4 minutes after the onset of ischemia and is most prominently seen during the first half of the repolarization interval. Ischemia-induced RA was detectable on unipolar and bipolar leads (both in near- and far-field configurations) and on body surface leads. Far-field bipolar intracardiac leads were more sensitive for RA detection than body surface leads, with the probability of body surface RA detection increasing as the number of intracardiac leads detecting RA increased, approaching 100% when at least three intracardiac leads detected RA. We developed a novel, clinically applicable intracardiac lead system based on a triangular arrangement of leads spanning the right ventricular and coronary sinus catheters, which provided the highest sensitivity for intracardiac RA detection when compared with any other far-field bipolar sensing configurations.

Conclusions—In conclusion, intracardiac alternans, a complex spatio-temporal phenomenon associated with arrhythmia susceptibility and sudden cardiac death, can be reliably detected through a novel triangular right ventricular–coronary sinus lead configuration. (Circ Arrhythm Electrophysiol. 2011;4:407-417.)

Key Words: arrhythmias | clinical electrophysiology | signal processing | intracardiac | alternans

Repolarization alternans (RA) reflects oscillations in cardiac repolarization that occur on an every-other-beat basis and can be visualized on the body surface ECG as 2 distinct, alternating ST-segment and/or T-wave morphologies. The presence of RA has been associated with an increased risk of sudden cardiac death in patients with diverse pathological conditions, including (1) symptoms suggestive of ventricular arrhythmias, (2) congestive heart failure or ejection fraction ≤40%, and (3) recent myocardial infarction.

Clinical Perspective on p 417

Numerous experimental and computational studies have demonstrated that spatially heterogeneous action potential duration alternans can provide the substrate for re-entrant arrhythmias including ventricular tachycardia/ventricular fibrillation (VT/VF). Furthermore, functional spatial dispersion of refractoriness is also likely to contribute to the onset of VT/VF. Therefore, it is conceivable that spatially localized cardiac RA leads to increased dispersion of refractoriness, wave front fractionation, reentry, and VT/VF. Building on this paradigm, it is likely that the heart either passes through a stage of heightened RA on the way to VT/VF or RA occurs in tight conjunction with the onset of VT/VF.

Previous studies have demonstrated that RA is inducible in vivo by coronary artery occlusion and that RA is detectable from intracardiac electrograms; however, intracardiac RA detection studies have been limited to spontaneously occurring or pacing-induced RA detected only by a right ventricular catheter or the combination of right ventricular and coronary sinus catheters.
The close association between RA and malignant arrhythmias raises the yet-unconfirmed possibility that dynamic control of RA in vivo may prevent the onset of VT/VF. However, the first step in the attempt of modulating RA is the accurate detection of the complex spatio-temporal nature of RA from an intracardiac lead configuration. This study investigates the hypothesis that a minimum-order intracardiac lead configuration may be developed to accurately estimate the presence of intracardiac RA. We probed this hypothesis in a swine acute myocardial ischemia model, in which intracardiac RA and body surface RA were estimated from electrograms obtained from catheters placed in the right ventricle, coronary sinus, left ventricle, and left ventricular epicardium (transpericardial). To test this hypothesis, we characterized the fidelity of body surface and intracardiac electrogram recordings both before and after ischemia induction; we investigated the spatio-temporal effects of acute myocardial ischemia on body surface and intracardiac RA; we investigated the effects of intracardiac sensing vector on RA estimation; and we determined the most sensitive intracardiac lead combination for RA estimation.

Methods

Animal Preparation

Ten male Yorkshire swine (weight, 40 to 45 kg) were anesthetized and acutely instrumented in the Animal Electrophysiology Laboratory of the Massachusetts General Hospital. The protocol was approved by the Hospital’s Animal Care and Use Committee.

Anesthesia was induced with Telazol (4.4 mg/kg IM) and Xylazine (2.2 mg/kg IM). Each animal was intubated and placed on a mechanical ventilator, and anesthesia was maintained with isoflurane (1.5% to 5%).

Percutaneous intracardiac access was achieved in the jugular veins and femoral arteries and veins using the standard Seldinger technique.36,37 Decapolar catheters were placed under fluoroscopic guidance in the (1) right ventricle (RV), the distal lead being at the RV apex, (2) the coronary sinus (CS), the distal lead being at the distal CS, (3) the left ventricle (LV), the proximal lead being at the LV apex, and in 5 swine in the (4) epicardial space (EPI). Pericardial access was obtained using a standard percutaneous substernum approach as previously described.38 An inferior vena cava catheter was inserted as a reference electrode for unipolar signals. An arterial line was used to monitor arterial blood pressure.

Standard ECG electrodes were placed on the animal’s limbs and chest; the epidermis was excised at point of contact to maximize signal quality.

Regional myocardial ischemia was induced via balloon occlusion of the proximal left circumflex coronary artery, using standard percutaneous cardiac catheterization techniques.

Equipment and Data Collection Methods

Intracardiac and body surface leads (II and V4) ECG signals as well as arterial blood pressure were recorded through a Prucka Cardiolab (General Electric) electrophysiology system that provided 16 high-fidelity analog output signals. The Prucka system provided front-end signal conditioning as well as isolation protection of the signal fidelity analog output signals. The Prucka system provided front-end signal conditioning as well as isolation protection of the signal fidelity analog output signals. The Prucka system provided front-end signal conditioning as well as isolation protection of the signal fidelity analog output signals. The Prucka system provided front-end signal conditioning as well as isolation protection of the signal fidelity analog output signals.

We developed a real-time signal acquisition, analysis, and display system for use in this study, consisting of custom software written in LabView 8.5 (National Instruments, Austin, TX) and MATLAB 7.6.

Table 1. Decision Matrix and Justification for Abnormal Beat Classification

<table>
<thead>
<tr>
<th>Case</th>
<th>Correlation Criterion</th>
<th>ΔR-R Interval Criterion</th>
<th>Abnormal Beats</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td><0.95</td>
<td><−10%</td>
<td>3 Beats: Previous, present, next</td>
<td>PVC</td>
</tr>
<tr>
<td>B</td>
<td><0.95</td>
<td>≥−10%</td>
<td>1 Beat: Present</td>
<td>Aberrantly conducted sinus beat (ie, bundle-branch block)</td>
</tr>
<tr>
<td>C</td>
<td>≥0.95</td>
<td><−10%</td>
<td>3 Beats: Previous, present, next</td>
<td>Supraventricular</td>
</tr>
<tr>
<td>D</td>
<td>≥0.95</td>
<td>≥−10%</td>
<td>0</td>
<td>Normal</td>
</tr>
</tbody>
</table>

(Reprinted from Circ Arrhythm Electrophysiol, 408, June 2011, with permission from the American Heart Association.)
Once all abnormal beats were identified in a 128-beat sequence, each abnormal beat was substituted with a median odd or even template beat on a lead-by-lead basis (derived from the odd or even “normal” beats respectively in the 128-beat sequence), depending on whether the abnormal beat was an even or odd beat.

Repolarization Interval Boundary Detection

Repolarization interval boundaries for RA analysis were independently determined for each of the body surface leads, intracardiac unipolar leads, and intracardiac bipolar leads to account for variability in the morphology as well as the timing of the T wave between leads.

For each beat, initial T-wave boundaries were established, using a rate-based T-wave window formula, in which the window begins 100 ms after the R wave if the previous R-R interval was >770 ms, 7.8% of the R-R interval plus 40 ms if the R-R interval was between 320 and 770 ms, and 65 ms if the R-R interval was <320 ms. The T-wave window ends 500 ms after the R wave if the previous R-R interval was >770 ms or at 65% of the R-R interval if the previous R-R interval was <770 ms.

T-wave boundaries were detected on a lead-by-lead basis by performing linear baseline adjustment across the T-wave window (using the approximate T-wave boundaries described above), squaring the T wave, integrating the T-wave power, and determining new and more accurate T-wave boundaries at timings corresponding to 1% and 99% of the signal power, respectively.

QRS boundaries were detected using the above method, using an initial window extending from 50 ms before the QRS peak to either 80 ms after the QRS peak or to the beginning of the T wave, whichever was shorter.

The repolarization interval was calculated as the end of the QRS complex to the end of the T wave. Boundaries between the ST segment and T wave were not calculated because of significant ST-segment elevations during acute coronary artery occlusion.

RA Estimation

Spectral alternans estimation was performed on a beat-by-beat basis for each 128-beat data sequence, using a 512-point power spectrum to improve the sampling resolution of the spectrum. To account for the spatial variability of RA, spectral estimation was independently performed for each lead.

Repolarization alternans indices were estimated as follows:

\[
\text{alternans voltage (μV)} = \sqrt{\frac{\text{alternans peak} - \mu_{\text{noise}}}{\sigma_{\text{noise}}}}
\]

\[
K_{\text{score}} = \frac{\text{alternans peak} - \mu_{\text{noise}}}{\sigma_{\text{noise}}}
\]

where the alternans peak is the peak in the aggregate power spectrum corresponding to 0.5 cycles/beat and the mean (μ_{\text{noise}}) and the standard deviation (σ_{\text{noise}}) of spectral noise are estimated from a predefined aggregate power spectrum noise window (0.43 to 0.46 cycles/beat). The alternans voltage is a direct measure of the presence of RA, whereas the alternans K_{\text{score}} is a measure of the statistical significance of the alternans voltage.

For each lead, RA was estimated on a beat-by-beat basis, using a rolling 128-beat window that was shifted 1 beat at a time.

Estimation of Intracardiac RA Thresholds

RA estimated from body surface electrograms in humans is deemed “positive” when both of the following criteria are met: (1) K_{\text{score}} ≥ 3 and (2) alternans voltage ≥ 1.0 μV.\(^{40}\) To adjust the alternans voltage threshold to a level suitable for the anesthetized swine, we scaled the human alternans voltage threshold by the ratio of the mass of the average 40 kg swine heart, 177 g,\(^{40}\) to the mass of the average human heart, 320 g (0.55). We accordingly implemented a swine body surface alternans voltage threshold of 0.55 μV.

Because intracardiac unipolar and bipolar signals are larger in amplitude than the body surface signals, it was also necessary to proportionately scale the intracardiac alternans voltage thresholds to account for these greater amplitudes. Failure to scale the voltage thresholds in this manner would have led to increased sensitivity but reduced specificity for RA detection when comparing intracardiac with body surface leads, thereby introducing bias into the study.

Therefore, we devised a method in which we determined an intracardiac alternans voltage threshold on an animal-by-animal basis by first calculating an amplitude scale factor for each intracardiac lead and then scaling the body surface alternans voltage threshold by this scale factor. Briefly, for each catheter lead, the signal amplitude was calculated as the square root of the mean signal power between 1 and 50 Hz. The amplitude scale factor for each lead was then calculated as the ratio of the mean signal amplitude, divided by the mean signal amplitude of all body surface leads. The alternans voltage threshold for each catheter was then calculated as the amplitude scale factor multiplied by the body surface threshold of 0.55 μV. The alternans voltage thresholds are displayed in the online-only Data Supplement.

Positive RA was determined to be present on a given lead within a 128-beat analysis segment when the K_{\text{score}} exceeded an amplitude of 3 and the alternans voltage exceeded the alternans voltage threshold as estimated for that lead. If <90% of the beats within the analysis window were “normal” beats (as defined above), the data segment was labeled indeterminate.\(^{40}\)

To allow comparisons between recordings with unequal duration, we devised the index “alternans percent”; this index is calculated as the total number of positive RA sequences divided by the total number of positive and negative sequences, where each segment was classified positive if at least 1 lead on each catheter, or at least 1 body surface lead, indicated positive RA.

Clinical Data Collection Protocol

After all intracardiac catheters were positioned under fluoroscopic guidance, a single baseline data set was recorded before circumflex coronary artery catheterization. An additional data set was recorded immediately after coronary artery catheterization and balloon inflation.

Data Analysis

We evaluated the presence of RA at baseline and immediately after circumflex coronary artery balloon occlusion in all intracardiac and body surface leads for all 128-beat sequences, with a good beat percentage exceeding 90%.

To explore the onset of RA during acute ischemia, we measured the time from the onset of circumflex balloon occlusion until RA was detected on each catheter, quantified as the time at which a minimum of 30 128-beat sequences were positive for RA.

To explore the temporal characteristics of ischemia-induced RA, we evaluated the alternans voltage and K_{\text{score}} throughout the repolarization interval (which extends from the beginning of the ST segment to the end of the T wave) for all intracardiac and body surface leads and compared the difference in alternans voltage and K_{\text{score}} between the first and second half of the repolarization interval.

To explore the sensitivity of intracardiac RA estimation in relation to body surface RA estimation, we aggregated all postocclusion 128-beat sequences from all study subjects and compared the proportion of RA-positive sequences as a function of the sensing configuration.

Statistical Analysis

Variables aggregated across all study subjects were expressed as mean ± standard deviation of means. The number of beats, record length, and mean heart rate in each data set were compared before and after coronary artery occlusion using the Wilcoxon matched-pairs signed-rank test. The percentage of PVCs and per-
Results

Intracardiac and Body Surface Electrograms

Figure 1A shows representative examples of body surface and unipolar intracardiac electrograms obtained before coronary artery balloon inflation. These electrograms demonstrate that all catheter leads provide low-noise, high-fidelity, artifact-free signals, suitable for RA analysis. As is apparent in Figure 1A, the amplitude of unipolar intracardiac electrograms is considerably larger than body surface electrograms. Across all study subjects, the average QRS amplitude was 0.53±0.14 mV for body surface leads and 4.17±1.99 mV for right ventricular, 1.86±0.74 mV for coronary sinus, 4.40±2.09 mV for left ventricular, and 4.44±1.59 mV for epicardial unipolar catheter leads.

Because of the variability in T-wave morphology and timing among leads, repolarization interval boundaries were automatically and independently detected for each lead. Figure 1B shows not-to-scale examples of body surface and unipolar intracardiac electrograms demonstrating that repolarization interval boundaries are accurately delineated for further RA analysis and that these boundaries vary significantly on a lead-by-lead basis.

Acute Myocardial Ischemia Induction

An average of 980±330 beats were recorded per animal at baseline, and an average of 1358±690 beats were recorded per animal after balloon occlusion (P=0.322, signed rank=17, n=10). The mean baseline record length was 562±177 seconds, and the mean postocclusion record length was 725±397 seconds (P=0.492, signed rank=20, n=10).

The mean heart rate at baseline was 105.3±8.7 bpm, and, after coronary artery balloon occlusion increased to 115.6±13.3 bpm, (P=0.084, signed rank=10, n=10). ST-segment elevations were observed in all 10 study subjects on multiple body surface and intracardiac leads after balloon occlusion (see Figure 2).

RA in the Presence of Acute Myocardial Ischemia

To investigate the effect of acute myocardial ischemia on RA, we evaluated the mean alternans voltage, Kscore, and percentage of RA-positive sequences at baseline and after balloon occlusion across all study subjects for each of the body surface, RV, CS, and LV catheters. The alternans voltage is reported in Figure 3A; Kscore is reported in Figure 3B; and the percentage of positive alternans beats is reported in Figure 3C.

The average percentage of PVCs at baseline was 2.0% and after coronary artery balloon occlusion was 2.7% (P=0.232, GEE method). The percent of indeterminate sequences at baseline was 11.4% and after coronary artery balloon occlusion was 16.2% (P=0.278, GEE method).

We observed that the alternans voltage, Kscore, and alternans percent all increased after acute ischemia induction (alternans voltage: P<0.0001, F=37.297, df=1; Kscore: P<0.0001, F=20.078, df=1, n=45; alternans percent: P<0.0001, F=105.481, df=1, n=45; where n is the total number of catheter comparisons: 10 each of the body surface, RV, CS, and LV catheters, and 5 EPI).
Onset of RA During Acute Ischemia

Figure 4A illustrates the increase in alternans voltage and Kscore for a single subject after the onset of acute ischemia. The body surface Kscore is plotted after acute circumflex coronary artery occlusion at time 0. In this example, the alternans voltage and Kscore increase significantly beginning 175 seconds after occlusion.

In 3 of the 10 study subjects, RA was present immediately after balloon occlusion. These subjects were excluded from onset time analysis, as RA may have begun to develop before balloon occlusion, potentially on account of partial vessel occlusion during guiding catheter placement or balloon delivery. Figure 4B summarizes the compiled results from the other 7 study subjects. The average alternans onset time was 190, 229, 191, 218, and 149 seconds for body surface, RV, CS, LV, and EPI catheters, respectively. No statistically significant difference was observed as a function of catheter type, including between body surface and intracardiac catheters (P=0.137, F=1.934, df=4, n=7; where n is the number of study subjects used in this comparison).

Temporal Characteristics of RA

To explore the temporal characteristics of ischemia-induced RA, we normalized each repolarization interval to time-values between 0% to 100% (where 0% corresponds to the beginning of the ST segment and 100% to the end of the T wave), and calculated the average alternans voltage and Kscore at each normalized time-value across all RA-positive repolarization sequences for each study subject.

Figure 5A presents the aggregate alternans voltage for each lead across the repolarization interval, averaged across all study subjects. The alternans voltage takes its maximum value at 31.4±9.8% of the repolarization interval when averaged across all leads. Figure 5B presents the aggregate alternans Kscore, and alternans percent at baseline (b) and immediately after circumflex coronary artery balloon occlusion (o) for body surface and RV, CS, LV and EPI unipolar intracardiac leads. Boxes define the 25%-median-75% data range, and vertical whiskers extend to the minimum and maximum. A, Alternans voltage; B, Kscore, and C, alternans percent. The alternans percent is equal to the total number of positive RA sequences divided by the total number of positive and negative sequences. Alternans voltage, Kscore, and alternans percent all increased after acute ischemia induction, (ANOVA, P<0.0001, F=37.297, df=1, n=45; P<0.0001, F=20.078, df=1, n=45; and P<0.0001, F=105.481, df=1, n=45, respectively, where n represents the overall sample size).
Effect of Sensing Vector on RA Estimation

Because unipolar electrograms integrate a large volume of cardiac tissue, they provide less spatial localization of cardiac events than bipolar electrograms; unipolar electrograms are also more susceptible to motion artifact than bipolar electrograms.\(^{33,44}\)

To analyze the effect of the sensing lead configuration on RA detection, we compared RA estimates obtained from unipolar, far-field bipolar, and near-field bipolar lead configurations in each catheter following circumflex coronary artery balloon occlusion. Specifically, we estimated the (1) alternans voltage, (2) \(K_{\text{score}}\), and (3) alternans percent, which we display in Figure 6A through 6C, respectively.

In Figure 6A, alternans voltage varies with sensing configuration \((P=0.007, \ F=5.219, \ df=2, \ n=35)\), where \(n\) is the total number of catheter comparisons (10 each of the RV, CS, and LV catheters, and 5 EPI). Alternans voltage estimated from both unipolar and far-field bipolar sensing configurations was significantly greater than when estimated from the near-field sensing configuration \((P=0.010\) and 0.031, respectively). In Figure 6B, we see no statistical difference in \(K_{\text{score}}\) as a function of sensing configuration \((P=0.097, \ F=2.395, \ df=2, \ n=35)\). In Figure 6C, we see no difference in alternans the repolarization interval (circles). The alternans voltage is greater in the first half of the repolarization interval than the second half \((P=0.0007, \ F=12.501, \ df=1, \ n=39)\); where \(n\) is the total number of catheter comparisons with RA-positive segments. Figure 5D shows a comparison of the mean alternans \(K_{\text{score}}\) in the first half of the repolarization interval (squares) versus the second half (circles). The alternans \(K_{\text{score}}\) is greater in the first half of the repolarization interval than the second half \((P=0.0002, \ F=15.247, \ df=1, \ n=39)\).

Figure 4. Timing of alternans onset. A. Alternans voltage and \(K_{\text{score}}\) after acute circumflex coronary artery balloon occlusion at time 0. The body surface alternans voltage (thin line) and \(K_{\text{score}}\) (thick line) are plotted for a single study subject; both alternans voltage and \(K_{\text{score}}\) significantly increase beginning 175 seconds after balloon occlusion. B. Alternans onset time across all study subjects for body surface and intracardiac catheters. Onset time for each catheter was determined as the time at which a minimum of 30 beats were positive for RA. Boxes define the 25%-median-75% data range; vertical whiskers extend to the min and max. No statistically significant difference was observed between body surface or intracardiac catheters (1-way ANOVA, \(P=0.137, \ F=1.934, \ df=4, \ n=7\), where \(n\) represents the overall sample size).

Figure 5. Temporal characteristics of repolarization alternans during the repolarization interval, which extends from the beginning of the ST segment (0%) to the end of the T wave (100%). A. Alternans voltage, plotted at each point in the repolarization interval, from 0% to 100%, for each of the body surface and unipolar RV, CS, LV, and EPI leads, compiled across all study subjects for all RA-positive segments. The alternans voltage takes its maximum at 31.4±9.8% of the repolarization interval when averaged across all leads. B. \(K_{\text{score}}\) plotted as in A. \(K_{\text{score}}\) takes its maximum at 29.0±8.3% of the repolarization interval when averaged across all leads. For A and B, error bars are SEM, shown only as positive deflections to improve data visualization. C. Comparison of the mean alternans voltage in the first half (0% to 50%) of the repolarization interval (squares) versus the second half (50% to 100%) of the repolarization interval (circles). Error bars are SEM. The alternans voltage is greater in the first half of the repolarization interval than the second half (ANOVA, \(P=0.0007, \ F=12.501, \ df=1, \ n=39\), where \(n\) represents the overall sample size). D. Comparison of the mean \(K_{\text{score}}\) in the first half of the repolarization interval (squares) versus the second half of the repolarization interval (circles). Error bars are SEM. \(K_{\text{score}}\) is greater in the first half of the repolarization interval than the second half (ANOVA, \(P=0.0002, \ F=15.247, \ df=1, \ n=39\)).
percent as a function of sensing configuration \((P=0.350, \text{F}=1.061, \text{df}=2, n=35)\).

Intracardiac Versus Body Surface Alternans Estimation

Because the benefits of far-field intracardiac sensing include better spatial localization of sensing and less susceptibility to noise than unipolar sensing vectors, we hereafter used far-field bipolar intracardiac leads for comparison to body surface RA. We used 4 far-field intracatheter bipolar leads—one per catheter—derived by subtracting nonadjacent pairs of unipolar leads with 2.7 to 3.6 cm spacing. We additionally used a triangular lead configuration, consisting of leads RV1CS1, RV1CS7, and CS7CS1, for this analysis; each of these leads was found to be positive for RA in 52.5%, 48.4%, and 40.1% of all postocclusion beat sequences, respectively \((n=9639\text{ beat sequences across all } 10\text{ study subjects})\).

Table 2 shows a 2×2 contingency table comparing the estimation of RA on body surface versus intracardiac leads for all postocclusion beat sequences; 75.0\% of beat sequences were positive for RA on at least 1 body surface lead, and 76.3\% of beat sequences were positive for RA on at least 1 intracardiac lead. Furthermore, 90.3\% of beat sequences positive for RA on a body surface lead were positive for RA on an intracardiac lead and 88.7\% of beat sequences positive for RA on an intracardiac lead were positive for RA on a body surface lead \((P=0.691, \chi^2=0.158, \text{MO})\).

To address the question of whether RA detection using intracardiac leads improves the sensitivity of RA detection compared with body surface electrograms alone, we estimated the conditional probabilities of a positive body surface RA detection, given a positive far-field bipolar intracardiac RA detection for all beat sequences \((n=9639)\). In Figure 7A, we plot the probability that a body surface lead is positive for RA given that a far-field bipolar intracardiac lead configuration is positive, from each of the RV, CS, LV, EPI, and triangular RV-CS lead configurations. The probability that a body surface lead is positive is 97.1\% (confidence interval \([CI], 90.4\text{ to } 99.2\%, \text{GEE}\) when an RV far-field bipolar lead is positive, 91.0\% \((CI, 79.3\%\text{ to } 96.4\%, \text{GEE}\) when a CS far-field bipolar lead is positive, 97.6\% \((CI, 93.4\%\text{ to } 99.1\%, \text{GEE}\) when an LV far-field bipolar lead is positive, 79.7\% \((CI, 58.3\%\text{ to } 96.1\%, \text{GEE}\) when an EPI far-field bipolar lead is positive, and 92.9\% \((CI, 84.7\%\text{ to } 96.8\%, \text{GEE}\) when a lead from a triangular RV-CS lead is positive.

In Figure 7B, we plot the probability that a body surface lead is positive for RA, given that a specified number of far-field bipolar intracardiac lead configurations is positive for RA (quantified across all beat sequences). We observe that the greater the number of far-field bipolar intracardiac lead configurations that is positive for RA, the greater the probability RA is seen on the body surface, approaching 100\% when at least 3 intracardiac lead configurations detect RA.

![Graph](https://example.com/graph.png)
To examine the sensitivity of intracardiac RA detection, in Figure 7C, we plot the probability that a far-field bipolar intracardiac lead configuration is positive for RA, given that RA is seen on the body surface, for each of the RV, CS, LV, EPI, and triangular RV-CS far-field intracardiac lead configurations (n=7225, overall sample size). The RV-CS positive percentage was significantly larger than for the CS configuration (P=0.006, $\chi^2=7.58$, MO) and trended toward statistical significance for RV-CS versus LV ($P=0.006$, $\chi^2=2.87$, MO), RV-CS versus EPI ($P=0.056$, $\chi^2=3.64$, MO), and RV-CS versus EPI ($P=0.154$, $\chi^2=2.03$, MO) comparisons. D, Probability that at least X far-field intracardiac leads are positive for RA given that RA is seen on the body surface, where X=1, 2, 3, 4, or all intracardiac leads. E, Probability that a far-field bipolar intracardiac lead is positive for RA, given that at least 1 intracardiac far-field lead is positive for RA, for each of the RV, CS, LV, EPI, and triangular RV-CS far-field intracardiac lead configurations. The RV-CS positive percentage was significantly larger than for the RV configuration ($P=0.040$, $\chi^2=4.23$, MO), the CS configuration ($P=0.004$, $\chi^2=8.16$, MO), and the LV configuration ($P=0.035$, $\chi^2=4.46$, MO) but not for the EPI configuration ($P=0.270$, $\chi^2=1.22$, MO). Statistically significant comparisons are marked by an asterisk.

Discussion

The present study aims to investigate the hypothesis that the spatio-temporal nature of intracardiac RA may be captured through a minimum-order of intracardiac leads. To achieve this aim, we used a swine acute myocardial ischemia model and developed and used a system that is capable of acquiring up to 16 electrograms from the body surface as well as
catheters placed in the RV, CS, LV, and LV EPI and estimating RA in real-time.

The present study is the first to provide a comprehensive and systematic approach into exploring the ability to record intracardiac RA in the presence of myocardial ischemia. Specifically, we have shown that first, in swine within 4 minutes after the onset of an ischemic episode, ischemia induces RA that can be detected by unipolar, near- and far-field bipolar intracardiac leads as well as leads on the body surface; second, during acute ischemia, RA is most prominently seen early in repolarization; third, far-field bipolar electrograms provide the preferred intracardiac lead configuration for the estimation of intracardiac RA; fourth, in the presence of body surface RA, at least 1 intracardiac far-field bipolar lead detects RA 90% of the time; fifth, the sensitivity for RA detection is improved by using leads from multiple intracardiac catheters; and sixth, we demonstrate that a simple, clinically appropriate, intracardiac triangular RV-CS lead configuration provides the highest intracardiac sensitivity for estimating RA.

In light of the extensive preclinical11,13–16,19 and clinical data31–34 demonstrating an association between heightened RA and the onset of malignant arrhythmias including VT/VF, the accurate detection and potential modulation of RA may hold promise as a method to preempt VT/VF. Implantable cardioverter-defibrillators (ICDs) have demonstrated efficacy in secondary45 and primary46–48 prevention of sudden cardiac death. However, a major drawback of current ICD therapy is the ability to terminate an arrhythmia only after the arrhythmia has started, thereby exposing patients to hemodynamic consequences such as loss of consciousness during arrhythmia and uncomfortable ICD shocks to terminate arrhythmia.49 Therefore, although unproven, the ability to detect a potentially unstable arrhythmic substrate could result in delivery of therapy prior to the clinical onset of arrhythmia, which could be an attractive way to improve current ICD technology. Additionally, numerous studies have demonstrated a relationship between both appropriate and inappropriate ICD shocks and worse outcomes, including heart failure progression and death.50 Although patients with ICD shocks may have a more malignant underlying disease process, the possibility of a direct adverse impact from ICD shock therapy on long-term outcomes remains a concerning possibility.51 Therefore, developing strategies that would predict the onset of a tachyarrhythmic event and deliver preemptive therapy could potentially result to reduction of ICD shocks and improvement of outcomes.

Although this study was not designed to provide localized RA estimates from near-field bipolar leads that are in close proximity to the area of ischemia/infarction, the dynamic nature of the electrophysiological properties near the core of an ischemic or infarcted territory makes it clinically impossible to always have a near-field bipolar lead in that area. Fortunately, our data suggest that far-field bipolar leads are superior to near-field bipolar leads in detecting RA during myocardial ischemia. Furthermore, the adoption of a novel intracardiac lead configuration consisting of bipolar leads between the RV and CS catheters provides a broader 3-dimensional “view” of the myocardium and a wider solid angle to the heart when compared with near-field bipolar leads from intracardiac catheters. In light of currently available biventricular devices for cardiac resynchronization therapy, the application of a triangular RV-CS lead configuration is a potentially clinically feasible means to optimize intracardiac RA detection.

In conclusion, these results indicate that RA induced by left circumflex coronary artery occlusion in swine can be detected from intracardiac electrograms with improved spatial resolution compared with that obtained from body surface ECGs. These observations support the hypothesis that intracardiac alternans analysis is a viable alternative to surface ECG alternans analysis and provides greater spatial sensitivity and specificity in the determination of potentially arrhythmogenic cardiac tissue.

Study Limitations
A limitation of this study is the lack of correlation between RA and arrhythmia susceptibility. Indeed, the incidence of VT/VF in this study was not sufficient to generate receiver-operator curves for both intracardiac and body surface signals. This has been the case because occlusion of the circumflex coronary artery was guided by the intent to induce RA without compromising the electric stability of the animal.

Acknowledgments
This work was conducted with support from Harvard Catalyst/The Harvard Clinical and Translational Science Center (National Institutes of Health Award No. UL1 RR 025758 and financial contributions from Harvard University and its affiliated academic health care centers). We are grateful to Hui Zheng, PhD (Assistant Professor in Medicine, MGH Biostatistics Center, Harvard Medical School) for his expert advice with the statistical analysis of this report.

Sources of Funding
The work was supported by a Scientist Development Grant (No. 0635127N) and a Pre-doctoral Fellowship (No. 0815767D) from the American Heart Association, by NIA grant 1R21AG035128, and National Institutes of Health grant 1ROIHL103961. This work was also supported by a Fellowship and a Science Award from the Center for Integration of Medicine and Innovative Technology (CIMIT), the Deane Institute for Integrative Research in Atrial Fibrillation and Stroke, and the Cardiovascular Research Society.

Disclosures
Dr Mela receives honoraria from Medtronic <$10K, Biotronik <$10K, and St Jude <$10K; Dr Mela also consults for Biotronik
References

10. Ikeda T, Saito H, Tanno K, Shimizu H, Watanabe J, Ohnishi Y, Kasamaki K. Dr Ruskin received research grants from Biosense Webster and St Jude Medical; he has ownership interest in Boston Scientific and Biosense Webster <$10K; and he has consulting fees from Medtronic <$10K and Biosense Webster <$10K; additionally, he received fellowship grants from Medtronic <$10K, St Jude <$10K, and Boston Scientific <$10K.

Repolarization alternans (RA) reflects oscillations in cardiac repolarization that occur on an every-other-beat basis. The presence of RA has been associated with an increased risk of sudden cardiac death, and numerous studies have mechanistically linked RA to reentrant arrhythmias. Although implantable cardioverter-defibrillators (ICDs) have demonstrated efficacy in prevention of sudden cardiac death, a major drawback of current ICD therapy is the ability to terminate an arrhythmia only after the arrhythmia has started, thereby exposing patients to hemodynamic consequences such as loss of consciousness during arrhythmia and uncomfortable ICD shocks. Therefore, although unproven, the ability to detect a potentially unstable arrhythmic substrate could result to delivery of therapy before the clinical onset of arrhythmia, which could potentially be an attractive way to improve current ICD technology. The present study investigated the hypothesis that a minimum-order intracardiac lead configuration may be developed to accurately estimate the presence of intracardiac RA. We probed this hypothesis in a swine acute myocardial ischemia model, in which intracardiac RA and body surface RA were estimated from electrograms obtained from catheters placed in the right ventricle, coronary sinus, left ventricle, and left ventricular epicardium (transpericardial). We found that a simple, clinically applicable intracardiac lead system based on a triangular arrangement of leads spanning the right ventricular and coronary sinus catheters provided the highest sensitivity for intracardiac RA detection. This research paves the way for the identification of a potentially therapeutic window between the onset of RA and the onset of malignant arrhythmia.
A Novel Lead Configuration for Optimal Spatio-Temporal Detection of Intracardiac Repolarization Alternans

Circ Arrhythm Electrophysiol. 2011;4:407-417; originally published online March 23, 2011; doi: 10.1161/CIRCEP.109.934208

Circulation: Arrhythmia and Electrophysiology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3149. Online ISSN: 1941-3084

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circcep.ahajournals.org/content/4/3/407

Data Supplement (unedited) at:
http://circcep.ahajournals.org/content/suppl/2011/03/23/CIRCEP.109.934208.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Arrhythmia and Electrophysiology_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Arrhythmia and Electrophysiology_ is online at:
http://circep.ahajournals.org//subscriptions/
Supplemental Material

Intracardiac Lead Threshold Estimation

To determine the thresholds for intracardiac signals, we first calculated the signal amplitude of each intracardiac lead for each animal as the square root of the mean signal power between 1 and 50 Hz. In Figure S1A we show for each baseline recording (n=10) and body surface (Surface), right ventricular (RV), coronary sinus (CS), left ventricular (LV), and epicardial (EPI) intracardiac catheters, the mean value of the signal amplitude for each intracardiac lead type (unipolar, far-field bipolar, and near-field bipolar) (black dots), as well as the mean and standard error of the mean for each lead type (red error bars).

We next determined an amplitude scale factor for each intracardiac lead type on an animal-by-animal basis by calculating the ratio of each intracardiac mean signal amplitude divided by the mean body surface signal amplitude. In Figure S1B we show for each baseline recording (n=10) and each catheter (Surface, RV, CS, LV, and EPI) the amplitude scale factor for each intracardiac lead type (unipolar, far-field bipolar, and near-field bipolar) (black dots), as well as the mean and standard error of the mean for each lead type (red error bars).

We next calculated the alternans voltage threshold for each intracardiac lead type on an animal-by-animal basis by multiplying the amplitude scale factor by the swine body surface alternans voltage threshold of 0.55 μV, which was derived by scaling the human alternans voltage threshold at rest, 1.0 μV\(^{37}\), by the ratio of the mass of the average 40 kg swine heart, 177 g\(^{38}\), to the mass of the average human heart, 320 g. In Figure S2 we display the alternans voltage thresholds for all ten animals, for
each catheter (Surface, RV, CS, LV, and EPI) and intracardiac lead type (unipolar, far-field bipolar, and near-field bipolar).
ONLINE SUPPLEMENT FIGURE CAPTIONS

Figure S1: Baseline signal amplitudes and scale factors for alternans voltage threshold determination for unipolar (Uni), far-field bipolar (FB), and near-field bipolar (NB) lead configurations on body surface (Surface), right ventricular (RV), coronary sinus (CS), left ventricular (LV), and epicardial (EPI) intracardiac catheters. (A) Baseline signal amplitudes. The mean signal amplitude for each lead type is displayed by a black dot, and the mean and standard error of the mean across animals is displayed in red. (B) Scale factors. The scale factor for each lead type is displayed by a black dot, and the mean and standard error of the mean across animals is displayed in red.

Figure S2: Alternans voltage threshold for each animal and intracardiac lead type. For each of ten animals, alternans voltage thresholds are displayed for unipolar (Uni), far-field bipolar (FB), and near-field bipolar (NB) lead configurations on body surface (Surface), right ventricular (RV), coronary sinus (CS), left ventricular (LV), and epicardial (EPI) intracardiac catheters.
Figure S1

A

Signal Amplitude (mV)

Surface RV CS LV EPI

B

Signal Ratios

Surface RV CS LV EPI
Figure S2

Alternans Voltage Threshold (μV)

Surface | RV | CS | LV | EPI

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14