A 70-year-old woman was initially referred to a community hospital for progressive fatigue and hyperbilirubinemia for 2 weeks. Six months before admission, she was started on dronedarone for atrial fibrillation. The latest liver function tests had been within normal range 9 months before admission. Her medical history included coronary artery disease and chronic obstructive pulmonary disease. She had no allergies. She did not smoke, drink alcohol, or use illicit drugs. Her current medication included aspirin, bisoprolol, dronedarone, lisinopril, hydrochlorothiazide, fomoterol, ipratropium bromide, and simvastatin. Over the course of her hospital stay, her total bilirubin peaked at 30.3 mg/dL, she had development of coagulopathy refractory to therapy (precluding liver biopsy), and serial ultrasound Doppler flow imaging of the liver showed reduced portal flow and beginning cirrhosis. She tested negative for Hepatitis A, B, and C viruses, hemochromatosis, and HIV. The rapid plasma reagin test, autoimmune panel, thyroid function, serum copper, and ceruloplasmin were all within normal limits. Acetaminophen blood tests were negative.

On the basis of the timing of jaundice in relation to dronedarone exposure and the absence of any other identifiable cause, she was diagnosed with dronedarone-induced acute liver failure. Liver function tests did not improve with high-dose steroid therapy. On the 9th day of admission, altered mental status and beginning of hepatic encephalopathy was noted.

She was therefore transferred to the university hospital for liver transplantation. Her clinical condition deteriorated with onset of grade 3 hepatic encephalopathy. Because her previous health condition was good, she was considered for high-urgency liver transplantation, which was performed on the 11th day of hospitalization. The operation was successful; she remained critically ill for the first postoperative week and recovered gradually but completely in the following 10 weeks.

Histopathology detected widespread necrosis of liver acini, massive canalicular and ductular cholestasis, a mixed cellular inflammatory infiltrate, and bile duct proliferation (Figure, B through D).

Discussion
This case report and others led to the Safety Announcement of the US Food and Drug Administration about cases of rare but severe liver injury in patients treated with the heart medication dronedarone (Multaq) in January 2011.

Dronedarone was developed as a potent antiarrhythmic drug without the side effects of amiodarone for treatment of atrial fibrillation. Reports on hepatotoxic effects of dronedarone have been controversial: In the Athena trial,1 abnormal liver function tests were reported in 12 of 2291 patients (0.5%), whereas in the Euridis/Adonis trials,2 hepatic events occurred in 100 of 822 patients (12%).

Dronedarone is metabolized in the liver by cytochrome P450 3A4. Hepatotoxicity may be based on the same pathomechanism underlying the connatural structure of dronedarone and amiodarone. Amiodarone causes a broad spectrum of hepatic manifestations from benign increases in aminotransferase levels to fatal hepatitis and cirrhosis.3 One of the
mechanisms for amiodarone-induced hepatotoxicity includes impairment of mitochondrial β-oxidation and uncoupling oxidative phosphorylation. This induces microsteatosis, apoptosis, and necrosis of hepatocytes.4

Our patient had normal liver function before dronedarone treatment, and the medication was taken for 6 months without monitoring the liver function tests in the meantime. On the basis of this case report, we propose that clinicians considering dronedarone therapy monitor liver function parameters as recommended now by the US Food and Drug Administration.

Disclosures
None.

References

Key Words: acute liver failure □ dronedarone □ atrial fibrillation □ antiarrhythmic
Acute Liver Failure Associated With Dronedarone
Nader Joghetaei, Gregor Weirich, Wolfgang Huber, Peter Büchler and Heidi Estner

Circ Arrhythm Electrophysiol. 2011;4:592-593
doi: 10.1161/CIRCEP.111.963447

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circep.ahajournals.org/content/4/4/592

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Arrhythmia and Electrophysiology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Arrhythmia and Electrophysiology is online at:
http://circep.ahajournals.org//subscriptions/