A 28-year-old man, with no previous medical history, was brought to the emergency department after being struck by a lightning bolt while working in an open field during a storm. He immediately received bystander cardiopulmonary resuscitation and was conscious at the time of arrival at the hospital. An initial evaluation revealed the presence of an electric burn at the entry site near the right elbow and exit wounds (punctate burns) on both feet (Figure 1A and 1B). Signs of hemodynamic compromise (blood pressure, 90/40 mmHg; heart rate, 160 beats per minute) were also observed. His ECG revealed an irregular wide complex tachycardia with a variable QRS duration for each beat and a forward axis on the horizontal plane. All these features were compatible with pre-excited atrial fibrillation (Figure 2A). Because of the hemodynamic instability of the patient, he was treated by electric cardioversion. A subsequent ECG showed a Wolff–Parkinson–White pattern with a left lateral accessory pathway (Figure 2B). The patient was referred for an electrophysiological study. Due to the initial presentation, radiofrequency ablation was indicated, and this procedure successfully terminated conduction through the accessory pathway.

Discussion
Lightning strike is a rare but potentially fatal event. The odds of being struck in a given year are estimated to be 1/1000000 for Americans. The mortality rate for lightning strikes is nearly 10%. An estimated 400 lightning injuries occur annually based on data averaged over the last decade. The estimated current of a bolt of lightning is massive, ranging from 30000 to 110000 A, although such currents are only applied for 10 to 100 ms. This effect leads to several abnormalities in the different organ systems.

The cardiovascular effects of a lightning strike are variable, ranging from benign electrocardiographic changes to sudden death. Cardiac dysfunctions, including severe biventricular failure and substantial pericardial effusion with tamponade, are mechanical consequences of this event. The direct current of a lightning strike can cause cardiac depolarization and asystole. There are also reports of the occurrence of atrial arrhythmias, specifically atrial fibrillation, in previously healthy patients after lightning strikes, as in the case presented herein. We could not find any case of pre-excited atrial fibrillation induced by a lightning strike in the medical literature. The probability of these rare events occurring together (having Wolff–Parkinson–White [0.003] plus being hit by lightning [0.00001] plus surviving respiratory arrest [0.1] plus developing pre-excited atrial fibrillation [0.11]) is ≈3.3×10. This exceedingly rare combination of factors may have ultimately benefited this particular patient because atrial fibrillation in individuals with Wolff–Parkinson–White is associated with increased mortality, making radiofrequency ablation the treatment of choice.
Disclosures

None.

References

Key Words: atrial fibrillation ■ lightning strike ■ Wolff–Parkinson–White syndrome

Figure 2. A, Twelve-lead ECG showing pre-excited atrial fibrillation. B, Twelve-lead ECG taken after electric cardioversion showing sinus rhythm and a Wolff–Parkinson–White pattern because of a left lateral accessory pathway.
Struck by Lightning: A Case of Nature-Induced Pre-excited Atrial Fibrillation
Tiago Luiz Luz Leiria, Leonardo Martins Pires, Marcelo Lapa Kruse and Gustavo Glotz de Lima

Circ Arrhythm Electrophysiol. 2013;6:e20-e21
doi: 10.1161/CIRCEP.112.000150
Circulation: Arrhythmia and Electrophysiology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3149. Online ISSN: 1941-3084

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circep.ahajournals.org/content/6/2/e20

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Arrhythmia and Electrophysiology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Arrhythmia and Electrophysiology is online at:
http://circep.ahajournals.org//subscriptions/