Public Health Burden of Sudden Cardiac Death in the United States

Eric C. Stecker, MD, MPH; Kyndaron Reinier, PhD; Eloï Marijon, MD; Kumar Narayanan, MD; Carmen Teodorescu, MD, PhD; Audrey Uy-Evanado, MD; Karen Gunson, MD; Jonathan Jui, MD, MPH; Sumeet S. Chugh, MD

Background—Sudden cardiac death (SCD) is a leading cause of death in the United States, but the relative public health burden is unknown. We estimated the burden of premature death from SCD and compared it with other diseases.

Methods and Results—Analyses were based on the following data sources (using most recent sources that provided appropriately stratified data): (1) leading causes of death among men and women from 2009 US death certificate reporting; (2) individual cancer mortality rates from 2008 death certificate reporting from the Centers for Disease Control and Prevention’s National Program of Cancer Registries; (3) county, state, and national population data for 2009 from the US Census Bureau; and (4) SCD rates from the Oregon Sudden Unexpected Death Study (SUDS) population-based surveillance study of SCD between 2002 and 2004. Cases were identified from multiple sources in a prospectively designed surveillance program. Incidence, counts, and years of potential life lost for SCD and other major diseases were compared. The age-adjusted national incidence of SCD was 60 per 100,000 population (95% confidence interval, 54–66 per 100,000). The burden of premature death for men (2.04 million years of potential life lost; 95% uncertainty interval, 1.86–2.23 million) and women (1.29 million years of potential life lost; 95% uncertainty interval, 1.13–1.45 million) was greater for SCD than for all individual cancers and most other leading causes of death.

Conclusions—The societal burden of SCD is high relative to other major causes of death. Accordingly, improved national surveillance with the goal of optimizing and monitoring SCD prevention and treatment should be a high priority. (Circ Arrhythm Electrophysiol. 2014;7:212-217.)

Key Words: cause of death ■ death, sudden, cardiac ■ epidemiology of SCD ■ public policy

Sudden cardiac death (SCD) is characterized by sudden circulatory collapse caused by cardiac arrhythmia. A majority of cases occur in the setting of chronic or acute ischemic heart disease.1 There is little information on the public health burden from SCD around the world, and it was not reported as part of the Global Burden of Disease Study.2 Estimates of annual incidence of SCD in the United States range between 180,000 and 450,000,3 corresponding to between 7% and 18% of all deaths in the United States. The high degree of variability in these estimates is because of limitations in data regarding mode of cardiovascular death. Death certificate reporting provides annual national estimates for many diseases but has proven inaccurate for SCD.4–6 Cohort studies and randomized trials have produced important insights into heart disease. However, inferences on incidence and burden are limited because few studies are designed to prospectively identify SCD and it often takes many years to accrue sufficient numbers of cases for analysis. Detailed knowledge of SCD is critical for targeting SCD-specific prevention and treatment at the population level (designing and evaluating emergency medical response systems and automatic external defibrillator deployments) and patient level (optimizing use of implantable cardioverter-defibrillators and developing new methods targeting arrhythmia death prevention).

Clinical Perspective on p 217

We sought to provide estimates of national SCD incidence and burden of premature death based on data from the Oregon Sudden Unexpected Death Study (SUDS) in Portland, OR, and compare these with other causes of death nationwide. Oregon SUDS is a multisource, population-based study of SCD among all ages in a community of 680,000 people. We estimated the burden of premature death using a well-accepted metric, years of potential life lost (YPLL). YPLL measures the total lost years of life for all individuals with a disease compared with individuals who live to a normal life expectancy.

Data Sources

Four primary data sources were used for this analysis and were selected from the most recent complete data sets available: (1) SCD rates from the Oregon SUDS population-based surveillance between

Received September 3, 2013; accepted February 25, 2014.

From the Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA (K.R., E.M., K.N., C.T., A.U.-E., S.S.C.); and Knight Cardiovascular Institute (E.C.S.), Department of Pathology (K.G.), and Department of Emergency Medicine (J.J.), Oregon Health and Science University, Portland.

Correspondence to Sumeet S. Chugh, MD, Cedars-Sinai Medical Center, The Heart Institute, 8700 Beverly Blvd, Saperstein Plaza, Suite 2S46, Los Angeles, CA 90048. E-mail sumeet.chugh@cshs.org

© 2014 American Heart Association, Inc.

Circ Arrhythm Electrophysiol is available at http://circep.ahajournals.org DOI: 10.1161/CIRCEP.113.001034
for Health Statistics National Vital Statistics System. Individual cancer referred to a cancer originating from a specific anatomic site. Examples include breast cancer and prostate cancer. Base-case estimates referred to national extrapolation of Multnomah County, Oregon, rates of SCD, and sudden cardiac arrest using only age and sex adjustment.

Multnomah County SCD rates
Data from 3 years of active surveillance among residents of all ages in Multnomah County were used. Each adjudicated SCD case was assigned to a sex and age category. Eighteen age categories were used: seventeen 5-year categories (0–5 years to 80–85 years) and 1 category of 86–90 years. The total number of deaths during 3 years for each age–sex category was divided by 3, yielding numerators for each age–sex category. US Census Bureau data for the Multnomah County population at the middle time point of the study period for each age–sex category constituted the denominators for the categories and allowed calculation of the population incidence of SCD for each age–sex category. These category incidences formed the basis for subsequent calculation of YPLL.

National SCD Estimates
National incidences of SCD were estimated for women, men, and overall using 2 methods. The first adjustment method extrapolated the sex- and age-stratified rates from Oregon SUDS to the nation overall, using conventional age-standardization techniques with the 2009 US population as the reference. National counts of SCD were determined by multiplying the estimated incidences by the national population. Estimates of SCA (combination of SCD and nonlethal arrests meeting criteria above) were calculated in the same manner as SCD and are reported in Table 1 for comparison.

A second national extrapolation technique, cardiac death risk adjustment, was used to adjust for potential regional differences in SCD rates beyond that explained by differences in population age and sex characteristics. For this extrapolation technique, we assumed that the ratio of SCD rates between each state and Multnomah County varied to the same degree as the ratio of overall heart disease mortality between each state and Multnomah County. The Multnomah County population-based SCD rate for each age–sex category was multiplied by the population of the corresponding age–sex category in each of the 50 states plus District of Columbia to yield an estimated state SCD event count. Each state count (stratified by sex) was multiplied by the ratio of overall heart disease mortality between that state and Multnomah County, resulting in an adjusted SCD count. The sum of the adjusted counts yielded the adjusted national SCD rates for SCD. The totals were divided by the national population to create an estimate of national SCD rates adjusted for differences by age, sex, and state. Implicit to this technique were 2 assumptions: (1) regional differences in SCD rates mirror the differences in overall cardiac death risk, and (2) differences in cardiac death risk between regions are constant across sex and age categories.

Table 1. Comparison of National Sudden Death Estimates Using Different Definitions and Analysis Methods*

<table>
<thead>
<tr>
<th>Estimation Method</th>
<th>Incidence in Women</th>
<th>Incidence in Men</th>
<th>Total Incidence</th>
<th>Total Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sudden cardiac death</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base case</td>
<td>45 (37–53)</td>
<td>76 (66–87)</td>
<td>60 (54–66)</td>
<td>183,001 (164,218–203,205)</td>
</tr>
<tr>
<td>Cardiac death risk adjustment</td>
<td>52</td>
<td>88</td>
<td>69</td>
<td>212,910</td>
</tr>
<tr>
<td>Sudden cardiac arrest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Base case</td>
<td>49 (42–58)</td>
<td>83 (73–95)</td>
<td>66 (59–73)</td>
<td>201,286 (181,417–222,594)</td>
</tr>
<tr>
<td>Cardiac death risk adjustment</td>
<td>57</td>
<td>96</td>
<td>76</td>
<td>234,085</td>
</tr>
</tbody>
</table>

*95% uncertainty intervals are shown in parentheses and were calculated using the gamma distribution method. Incidence rates are expressed per 100,000 national population and were extrapolated from Multnomah County data (with and without adjustment for state-specific differences in overall cardiac death risk, as described in the Methods section). Sudden cardiac death refers to patients who died within 1 hour of symptom onset if witnessed or within 24 hours of last being seen alive in normal state if unwitnessed. Sudden cardiac arrest refers to all patients with sudden cardiac death as well as those who survived until hospital discharge after resuscitation for a primary arrhythmia.
National Rates of Death From Non-SCD Causes

Deaths from common diseases were identified from national death certificate summary reports that were stratified by the same age–sex categories as the Multnomah County data. Total counts for each sex were divided by the national population of that sex during the year of measurement (2008 for cancers and 2009 for all other causes of death) and multiplied by 100,000 to yield a national population-based rate. Counts within each age–sex category were used for YPLL comparisons.

Years of Potential Life Lost

YPLL was calculated for SCD and other causes of death by multiplying the estimated number of nationwide deaths in each age–sex category by the 2009 US population life expectancy at the midpoint of that age category. For each cause of death, YPLL was totaled for all age categories. An additional analysis for YPLL from SCD was performed using the cardiac death risk adjustment described above.

Statistical Analysis

Calculations were performed using Microsoft Excel version 14.0 and SAS version 9.4. The statistical level of uncertainty surrounding national SCD incidence rates was calculated using 95% confidence intervals (CIs) as suggested for age-adjusted rates15 as follows:

\[R = \sum_{i=1}^{m} s_i \left(\frac{d_i}{P_i} \right), \]

where \(R \) is the age-adjusted rates, \(m \) is the number of age groups, \(d_i \) is the number of deaths in age group \(i \), and \(P_i \) is the population in age group \(i \) and \(s_i \) is the proportion of the standard population in age group \(i \). Variance is given by

\[\nu = \sum_{i=1}^{m} d_i \frac{s_i^2}{P_i^2} \]

CI as follows:

- **Lower Limit** = \(\frac{v + w_m}{2} (X^2)^{-1/2} (\alpha/2) \)
- **Upper Limit** = \(\frac{v + w_m}{2 + w_m} (X^2)^{-1/2} (1 - \alpha/2) \)

where \(v \) is the variance, \(w_n \) is the maximum likelihood of the weights \(s_i/P_i \), \(1-\alpha \) is the CI desired, and \((X^2)^{-1/2} \) is the inverse of the \(X^2 \) distribution with \(d-2 \) df. 95% Uncertainty intervals for YPLL from SCD were calculated based on the 2.5th and 97.5th percentile distributions from Monte Carlo simulations using 10000 sample draws with binomial distributions of the Multnomah County SCD rates.

According to convention for national demography reporting (as suggested for age-adjusted rates15), as follows:

\[R = \sum_{i=1}^{m} s_i \left(\frac{d_i}{P_i} \right), \]

Comparisons of National Rates of SCD With Other Leading Causes of Death

Among women, overall heart disease and cancer were the leading causes of death, with rates of 188 per 100000 and 174 per 100000, respectively (Table 2). Rates of cerebrovascular disease (49 per 100000), chronic lower respiratory disease (46 per 100000), lung cancer (45 per 100000), and SCD (45 per 100000; 95% CI, 37–53 per 100000) were all in a similar range.

Comparisons of Burden of Premature Death From SCD With Other Leading Causes of Death

Total YPLL from SCD for men (2.04 million; 95% uncertainty interval, 1.86–2.23 million) was greater than from chronic lower respiratory disease (0.72 million), cerebrovascular disease (0.62 million), and diabetes mellitus (0.53 million). SCD accounted for 50% of all YPLL caused by overall heart disease (4.11 million) and trailed only overall cancer (4.32 million) and accidental death (2.38 million) among noncardiovascular causes of death. Use of the cardiac death risk adjustment method increased the YPLL from SCD to 2.36 million.

<table>
<thead>
<tr>
<th>Disease</th>
<th>No. of Deaths</th>
<th>Death Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall heart disease</td>
<td>293187</td>
<td>188</td>
</tr>
<tr>
<td>Sudden cardiac death</td>
<td>69524 (58152–82294)</td>
<td>45 (37–53)</td>
</tr>
<tr>
<td>Overall cancer</td>
<td>270865</td>
<td>174</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>70040</td>
<td>45</td>
</tr>
<tr>
<td>Breast cancer</td>
<td>40576</td>
<td>26</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>25918</td>
<td>17</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>76769</td>
<td>49</td>
</tr>
<tr>
<td>Chronic lower respiratory disease</td>
<td>72234</td>
<td>46</td>
</tr>
<tr>
<td>Alzheimer disease</td>
<td>54916</td>
<td>35</td>
</tr>
<tr>
<td>Accidents</td>
<td>42999</td>
<td>28</td>
</tr>
</tbody>
</table>

* Sudden cardiac death was estimated using base-case rates from the Oregon Sudden Unexpected Death Study. All other estimates were measured by death certificate–based data from US Centers for Disease Control and Prevention. (Counts may vary from Centers for Disease Control and Prevention totals by <0.5% because of differences in cause of death categorization in infants and suppression of cell counts <16.) Death rates are expressed per 100 000 national female population. 95% uncertainty intervals are listed in parentheses.
Among women, total YPLL for SCD (1.29 million; 95% uncertainty interval, 1.13–1.45 million) was greater chronic lower respiratory disease (0.87 million), cerebrovascular disease (0.78 million), and Alzheimer disease (0.35 million). It was of borderline greater magnitude than accidental death (1.17 million). SCD accounted for 41% of YPLL caused by overall heart disease (3.11 million) and was exceeded in magnitude only by overall cancer (4.47 million) among noncardiovascular causes of death. Use of the cardiac death risk adjustment method increased the estimated YPLL from SCD to 1.49 million.

For men, the burden of YPLL for SCD and most major diseases began to increase between 35 and 45 years of age, whereas that of accidental death was most pronounced between 10 and 60 years of age (Figure 1). For women, there was a similar early peak of YPLL from accidental death, although of smaller magnitude. Heart disease and SCD premature death burdens began to increase more slowly, with lower peaks relative to overall cancer. Unlike heart disease in men and unlike cancer in both sexes, YPLL from heart disease in women continued to climb in old age.

SCD was responsible for a greater burden of premature death than all individual cancers for each sex (Figure 2). Among men aged <65 years, YPLL from SCD was more than double that from any individual cancer.

Discussion

This study demonstrates the large public health burden of SCD, which is responsible for 40% to 50% of YPLL from heart disease. The incidence and premature death burden from SCD exceeded that of any individual cancer in both men and women. Among women, SCD exceeded all noncardiac causes of premature death except overall cancer. Among men, SCD exceeded all except overall cancer and accidents. The estimated annual national incidence of SCD using standard age and sex adjustment was 183000 (95% uncertainty interval=164000–203000). The point estimate for national SCD incidence after adding cardiac death risk adjustment increased to 213000. This study not only adds to previous reports of SCD incidence but also places the problem of SCD in a broader societal perspective by comparing it with other causes of death. Because of lower population-based rates of SCD in Oregon, the actual national burden of premature death from SCD is likely even greater than we have reported in our base-case estimate. Adjusting for regional differences in SCD rates resulted in a 15% higher burden of YPLL from SCD for both men and women.

To our knowledge, this is the first study to estimate national rates of SCD using prospective surveillance systems with rigorously adjudicated cause-of-death information on patients of all ages. This allows for the comparison of premature death between SCD and other causes. The societal burden of premature death is an important factor that should help to guide relative allocation of resources for studying, preventing, and treating diseases. The high burden of SCD stands in contrast to the limited scientific knowledge regarding its incidence, origin, and risk factors. This may be a manifestation of the modest epidemiological surveillance efforts dedicated to heart disease overall. Heart disease deaths are tracked nationally only by use of death certificates as part of the CDC’s National Vital Statistics System. This is of limited use for detailed epidemiological research, and it has been repeatedly shown to inaccurately reflect the mode of cardiovascular death compared with detailed clinical review of cases. Incidence and recurrent event data for heart disease, reported annually in the American Heart Association’s Heart Disease and Stroke Statistics updates, are
of the burden of premature death from SCD relative to other diseases. The most important limitation is the use of a single metropolitan area. In lieu of a national cardiovascular epidemiological registry system, a majority of inferences about incidence and trends of cardiovascular disease have been derived from cohorts much smaller than Multnomah County’s population. At this point, Multnomah County is the only source of data possessing all of the requisite attributes for this analysis. In particular, cause-of-death and mode-of-death adjudication must be robust to prevent inclusion of cardiac arrests that are not primarily arrhythmic (eg, primary respiratory failure) or occur in the setting of a known terminal illness (eg, metastatic cancer) from leading to an overestimation of SCD rates. For example, despite other strengths of the ROC Epistry–Cardiac Arrest study, it seems to have overestimated the rate of SCD in the Portland metropolitan area (60 per 100,000 in Oregon SUDS with detailed clinical mode-of-death adjudication; 71 per 100,000 in ROC Epistry–Cardiac Arrest). Another important limitation is that the death certificate data used for non-SCD death are prone to disease miscategorization (although likely to a lesser degree than death certificate–based SCD data). Nonetheless, these data sources are preferred by CDC for nationwide comparisons, and alternative sources are not available. Finally, YPLL estimates in the present study are generally less than those from the US portion of the Global Burden of Diseases Study. This is likely because of the use of US-specific life expectancy estimates in the present study, whereas the Global Burden of Diseases Study used the lowest death rate across countries for each age group to estimate US life expectancies.

Conclusions

The societal burden of SCD as measured by YPLL is highly relative to other major noncardiac conditions. Creation of a nationwide surveillance system for cardiovascular disease has been recognized as a priority. As the present study illustrates, the high societal burden of SCD alone could justify such a project. In areas where research collaborations between cardiology and emergency medicine systems are feasible, a network of nationally representative community-based studies of SCD could be developed to measure rates and modes of cardiovascular death and track them over time. Such an effort would facilitate a better understanding of SCD causes and a more accurate and timely assessment of the effectiveness of SCD prevention and treatment efforts.

Acknowledgments

American Medical Response, Portland/Gresham fire departments, and the Oregon State Medical Examiner’s office were essential to the success of this research.

Sources of Funding

This study was funded by National Heart, Lung, and Blood Institute grants R01 HL088416 and R01 HL105170 to Dr Chugh. Dr Chugh holds the Pauline and Harold Price Endowed Chair in Cardiac Electrophysiology at the Cedars-Sinai Heart Institute, Los Angeles, CA.

Disclosures

Dr Stecker received research grants from Biotronik and Boston Scientific. The other authors report no conflicts.
Sudden cardiac death (SCD) is widely recognized as an important cause of death, but national estimates of its magnitude have proven unreliable. Investigators of the Oregon Sudden Unexpected Death Study (SUDDS) have engaged in multiple-source, population-based research that minimizes the inaccuracies that often limit SCD surveillance. Using data from Oregon SUDDS, the Centers for Disease Control and Prevention, and the US Census Bureau, they estimated the national incidence and burden of premature death (measured as years of potential life lost) because of SCD and compared it with other major causes of death. The total annual number of SCD cases in the United States was between 183,000 and 213,000 using different estimation methods. The burden of premature death was 2.0 million years of potential life lost for men and 1.3 million years of potential life lost for women, more than any individual cancer and most other leading causes of death. The authors conclude that the magnitude of premature death from SCD makes prevention of this condition a major public health priority. The creation of a national surveillance network for SCD will be a vital step toward discovering new methods of prevention and monitoring their effectiveness.
Public Health Burden of Sudden Cardiac Death in the United States
Eric C. Stecker, Kyndaron Reinier, Eloi Marijon, Kumar Narayanan, Carmen Teodorescu, Audrey Uy-Evanado, Karen Gunson, Jonathan Jui and Sumeet S. Chugh

Circ Arrhythm Electrophysiol. 2014;7:212-217; originally published online March 7, 2014;
doi: 10.1161/CIRCEP.113.001034
Circulation: Arrhythmia and Electrophysiology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3149. Online ISSN: 1941-3084

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circep.ahajournals.org/content/7/2/212

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Arrhythmia and Electrophysiology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Arrhythmia and Electrophysiology is online at:
http://circep.ahajournals.org/subscriptions/