Effects of Sex on the Incidence of Cardiac Tamponade After Catheter Ablation of Atrial Fibrillation

Results From a Worldwide Survey in 34943 Atrial Fibrillation Ablation Procedures

Yoav Michowitz, MD; Michael Rahkovich, MD; Hakan Oral, MD; Erica S. Zado, PA-C; Roland Tilz, MD; Silke John, MD; Arnaud Denis, MD; Luigi Di Biase, MD; Roger A. Winkle, MD; Evgeny N. Mikhaylov, MD, PhD; Jeremy N. Ruskin, MD; Yan Yao, MD; Mark E. Josephson, MD; Hildegard Tanner, MD; John M. Miller, MD; Jean Champagne, MD; Paolo Della Bella, MD; Koichiro Kumagai, MD; Pascal Defaye, MD; David Luria, MD; Dmitry S. Lebedev, MD, PhD; Andrea Natale, MD; Pierre Jais, MD; Gerhard Hindricks, MD; Karl-Heinz Kuck, MD; Francis E. Marchlinski, MD; Fred Morady, MD; Bernard Belhassen, MD

Background—Cardiac tamponade is the most dramatic complication observed during atrial fibrillation (AF) ablation and the leading cause of procedure-related mortality. Female sex is a known risk factor for complications during AF ablation; however, it is unknown whether women have a higher risk of tamponade.

Methods and Results—A systematic Medline search was used to locate academic electrophysiological centers that reported cases of tamponade occurring during AF ablation. Centers were asked to provide information on cases of acute tamponade according to sex and their mode of management including any case of related mortality. Nineteen electrophysiological centers provided information on 34943 ablation procedures involving 25261 (72%) men. Overall, 289 (0.9%) cases of tamponade were reported: 120 (1.24%) in women and 169 (0.67%) in men (odds ratio, 1.83; P<0.001). There was a reciprocal association between center volume and the occurrence of tamponade with substantially lower risk in high-volume centers. Most cases of tamponade occurred during catheter manipulation or ablation; women tended to develop more tamponades during transseptal catheterization. No sex difference in the mode of management was observed. However, 16% cases of tamponade required surgery with lower rates in high-volume centers. Three cases of tamponade (1%) culminated in death.

Conclusions—Tamponade during AF ablation procedures is relatively rare. Women have an ≈2-fold higher risk for developing this complication. The risk of tamponade among women decreases substantially in high-volume centers. Surgical backup and acute management skills for treating tamponade are important in centers performing AF ablation. (Circ Arrhythm Electrophysiol. 2014;7:274-280.)

Key Words: atrial fibrillation ■ cardiac tamponade ■ catheter ablation ■ sex

Catheter ablation of atrial fibrillation (AF) is one of the most complex interventional procedures in cardiology. The procedure has been associated with a minimal but nevertheless important risk of major complications.1-5 Cardiac tamponade is the most frequently encountered procedure-related complication occurring in 1.2% to 1.3% of patients in 2 worldwide surveys5,6 and 1.3% in a European survey.7 It is also the main cause of procedure-related mortality, responsible for 25% of lethal cases.8,9

Female sex is a known risk factor for complications during AF ablation.1,3,4,10 In a study of 40 patients who developed cardiac tamponade during AF ablation at 3 institutions,11 half of the patients were women, despite the known lower prevalence of women undergoing AF ablation.12 In contrast in a series of 3265 patients (16% women) undergoing AF ablation, women did not experience more tamponade.10 Higher cardiac perforation risk was also observed in women undergoing percutaneous coronary interventions,13 devices implantations,14 and catheter ablation of accessory pathways.15
The purpose of the present study was to evaluate the relationship between patient sex and cardiac tamponade in a large patient cohort undergoing catheter ablation of AF.

Methods

Data Source and Center Selection
A Medline search was used to locate academic electrophysiological centers that are involved in AF ablation. The systematic Medline review was conducted by 2 investigators with the typed search words atrial fibrillation ablation. The search was limited to English language articles published between 2000 and 2012 that involved only patients aged >19 years. All centers with publications reporting tamponade as a procedure complication were eligible for inclusion.

Meta-analysis, multicenter trials, and case reports were excluded, as well as publications that involved patients with AF associated with cardiomyopathies, valvular heart disease, or uncommon cardiac anatomy or those who underwent surgical ablation of AF. Studies that involved the use of Hansen or Stereotaxis for catheter manipulation or high-intensity focused ultrasound as the source of energy were also excluded.

Data Acquisition
All electrophysiological center directors were contacted and asked to provide detailed information on (1) the total number of AF ablation procedures performed in their laboratory; (2) the total number of procedures performed in patients of each sex; (3) the total number of acute tamponade occurring during or within 24 hours after the procedure in regard to patient sex; (4) the age of patients experiencing tamponade; (5) the mode of management of tamponade (pericardiocentesis, surgery, or both); and (6) any case of 30-day mortality that was assumed to result from tamponade.

The cooperating centers were also asked about (1) the use of intracardiac echocardiography (ICE) or transesophageal echocardiography for transseptal puncture and monitoring pericardial space; (2) the average power settings during AF ablation they used; and (3) the mode occurrence of tamponade according to patient sex: during transseptal puncture, catheter manipulation, or ablation in the left atrium. The study was approved by the Tel-Aviv Medical Center institutional review committee.

Statistical Analysis
All data were summarized as number and percent in each center. The calculation of the combined effect size was done as a meta-analysis. At the first step, a heterogeneity test was done, followed by the calculation of the fixed and random combined effect size using DerSimonian and Laird method, and the results were displayed as a forest plot.

The estimation of the association between the center experience and the percent of tamponade was done using regression curve estimation for inverse association ($y=a+b/x$). We assumed that the responses from centers were representative and that nonresponse bias was negligible. All analyses were considered significant at $P<0.05$ (2-sided). Categorical data were analyzed using the χ^2 test. The Comprehensive Meta-analysis software was used for the meta-analysis (http://www.meta-analysis.com/index.php), whereas all other analyses were performed using the SPSS software version 21.0 (2012).

Results

Medline Search
The search permitted retrieval of 2740 citations. After reviewing all abstracts and when necessary the full articles we identified 136 reports from 85 electrophysiological centers that were compatible with the inclusion criteria.

Overall 19 centers provided details of their entire AF ablation patient cohort, whereas 2 (#16 and #17) that provided a large number of patients only gave data on selective consecutive years (Table 1). Ten centers provided data on the occurrence of tamponade in the study group described in their published report but not in their entire AF ablation cohort. Therefore, these centers were not included in the present study. In 6 instances the corresponding authors could not be located. Authors from 3 centers responded but could not provide the requested data. Forty-seven electrophysiological centers did not answer our e-mails.

Study Patient Cohort
Overall, 34,943 AF ablation procedures were conducted in the 19 participating centers: 25,261 (72%) in men and 9682 (28%) in women. There were 289 (0.84%) cases of acute tamponade of which 169 (0.67%) occurred in men and 120 (1.2%) in women ($P<0.0001$). The distribution of procedures and tamponade among the various centers is provided in Table 1, with Q value of 17.3 in the heterogeneity test ($P=0.50$). The average age of men with tamponade was 62±9 years (range, 32–83 years; median, 62) was comparable with that of women, 63±9 years (range, 21–82 years; median 64; $P=0.16$).

An odds ratio plot is provided in Figure 1, demonstrating an overall 83% higher risk (odds of 1.83) for women to develop tamponade during AF ablation. Individually in 17 of 19 centers there was a higher proportion of women who experienced tamponade; however, the sex difference reached statistical significance ($P<0.05$) in only 5 centers.

Analysis According to Center Procedural Volume
A regression curve demonstrating the relationship between center volume and tamponade percentage is provided in Figure 2. A reciprocal relationship forces the curve to flatten out >1500 with an asymptotic value of 0.45%. Analyzing men and women separately (Figure 3) shows similar regression lines. In men, the incidence of tamponade decreases from 0.73% (for 1000 patients) to 0.45% (for $n=\infty$ patients), whereas in women the incidence of tamponade decreases from 0.87% (for 1000 patients) to 0.5% (for $n=\infty$ patients).

Procedural Characteristics Related to Tamponade
Eighteen of 19 (95%) centers provided detailed information about procedural characteristics related to tamponade in 279 patients. The use of ICE or transesophageal echocardiography for transseptal puncture and monitoring pericardial space was systematic in 6 electrophysiological centers (#6, 9, 11, 13, 14, and 18), whereas it was not used in 9 (2–5, 8, 10, 15–17). Center #7 used ICE in the vast majority of cases but in none of the tamponade cases. Center #19 used ICE in >60% of cases, whereas the remaining centers started to use ICE/transesophageal echocardiography routinely only recently (#1) or as needed (#12). Power settings were not significantly different between centers, ranging from 20 to 35 W in the posterior wall and ≤ 40 W elsewhere. Lesion duration varied from 15 to 60 seconds and temperature <42 to 45°C. Center #13 used 50 W during ablation, however, with continuous movement. Center #3 also used cryoballoon. Ten cases of tamponade were related to discernible steam pops (1 center reported the occurrence of steam pops without the development of tamponade). Forty-three tamponades (27 men [16.5%], 16 women [13.7%]; $P=0.6$) were diagnosed post procedurally.

Of a total of 279 tamponades (116 women) reported in the 18 electrophysiological centers, presumed mechanism
of tamponade was related to radiofrequency energy delivery in the left atrium, unknown, catheter manipulation, or trans-septal puncture in 33.3%, 32.9%, 22.9%, and 10.8% patients, respectively (Table I in the Data Supplement). Women tended to develop more tamponades during transseptal catheterization (16.3% versus 6.7%; \(P = 0.046 \)).

Mode of Tamponade Management

Of the 289 cases of tamponade reported by the 19 participating centers, 243 (84%) were treated by pericardiocentesis only, 43 (15%) by pericardiocentesis followed by surgery, and 3 (1%) by surgery-only (Table 2). All 3 patients treated by surgery-only were women. There was no sex difference in the percentage of patients managed by surgery (\(P = 0.125 \)). There was an inverse correlation between the proportions of patients with tamponade treated by surgery and the center procedural volume (\(r = -0.466; R^2 = 0.217; P = 0.044 \); Figure 4).

Tamponade-Related Mortality

There were 3 death events (1%) among the 289 cases of cardiac tamponade. Mortality rate resulting from tamponade was 0.008% for all procedures. The 3 lethal cases occurred in different centers and involved men only. One case of tamponade was identified several hours after the procedure with no evidence of pericardial effusion on ICE at the end of the procedure. The other 2 were diagnosed in the electrophysiological laboratory. All tamponade-related deaths occurred a few days after the procedure.

Discussion

Main Findings

To the best of our knowledge this is the largest study evaluating sex difference in the risk of tamponade during AF ablation. The occurrence of tamponade during AF ablation procedures was found to be relatively rare (0.84%); however, women had an 83% higher risk for developing this complication. The risk of developing tamponade was inversely related to center volume with a substantial decrease in women risk in high-volume centers. Surgical management was required in 16% of cases of tamponade irrespective of patient sex, whereas 1% of cases of tamponade resulted in death.

Sex and Risk of Tamponade

Patel et al.\(^1\) examined 3265 patients who underwent AF ablation, of whom 518 (16%) were women. They did not report any sex difference in tamponade occurrence; however, the overall incidence of tamponade was extremely low (0.3%), and therefore that study was underpowered to answer the question.

Shah et al.\(^1\) reported the outcomes of 4156 AF ablations identified from a California state database. They reported a 2.5% incidence of tamponade. Although female sex was associated with increased complication risk, the individual association of female sex and tamponade was not reported. A higher periprocedural complication risk among women was also reported in several other studies\(^4,17\) that suggested increased caution and preprocedural discussion of anticipated risk in women.\(^4\) Nevertheless, all the above-referenced studies were

![Table 1. Study Patient Cohort and Incidence of Cardiac Tamponade Among the Participating Centers](http://circep.ahajournals.org/)

<table>
<thead>
<tr>
<th>Institution</th>
<th>Total No. of Procedures</th>
<th>Total No. of Tamponades</th>
<th>Tamponades, %</th>
<th>Total No. of Procedures in Men</th>
<th>Total No. of Procedures in Women</th>
<th>Tamponade in Men</th>
<th>Tamponade in Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>264</td>
<td>6</td>
<td>2.27</td>
<td>183</td>
<td>81</td>
<td>1</td>
<td>0.55</td>
</tr>
<tr>
<td>2</td>
<td>264</td>
<td>11</td>
<td>4.17</td>
<td>187</td>
<td>77</td>
<td>7</td>
<td>3.74</td>
</tr>
<tr>
<td>3</td>
<td>429</td>
<td>7</td>
<td>1.63</td>
<td>334</td>
<td>95</td>
<td>4</td>
<td>1.20</td>
</tr>
<tr>
<td>4</td>
<td>857</td>
<td>6</td>
<td>0.70</td>
<td>637</td>
<td>220</td>
<td>4</td>
<td>0.63</td>
</tr>
<tr>
<td>5</td>
<td>893</td>
<td>12</td>
<td>1.34</td>
<td>641</td>
<td>252</td>
<td>10</td>
<td>1.56</td>
</tr>
<tr>
<td>6</td>
<td>990</td>
<td>8</td>
<td>0.81</td>
<td>841</td>
<td>149</td>
<td>4</td>
<td>0.48</td>
</tr>
<tr>
<td>7</td>
<td>1020</td>
<td>20</td>
<td>1.96</td>
<td>616</td>
<td>404</td>
<td>6</td>
<td>0.97</td>
</tr>
<tr>
<td>8</td>
<td>1067</td>
<td>10</td>
<td>0.94</td>
<td>818</td>
<td>249</td>
<td>6</td>
<td>0.73</td>
</tr>
<tr>
<td>9</td>
<td>1117</td>
<td>21</td>
<td>1.88</td>
<td>809</td>
<td>308</td>
<td>10</td>
<td>1.24</td>
</tr>
<tr>
<td>10</td>
<td>1267</td>
<td>15</td>
<td>1.18</td>
<td>876</td>
<td>391</td>
<td>8</td>
<td>0.91</td>
</tr>
<tr>
<td>11</td>
<td>1376</td>
<td>10</td>
<td>0.73</td>
<td>975</td>
<td>401</td>
<td>6</td>
<td>0.62</td>
</tr>
<tr>
<td>12</td>
<td>1432</td>
<td>15</td>
<td>1.05</td>
<td>808</td>
<td>624</td>
<td>4</td>
<td>0.50</td>
</tr>
<tr>
<td>13</td>
<td>1504</td>
<td>9</td>
<td>0.60</td>
<td>1083</td>
<td>421</td>
<td>5</td>
<td>0.46</td>
</tr>
<tr>
<td>14</td>
<td>2751</td>
<td>6</td>
<td>0.22</td>
<td>1946</td>
<td>805</td>
<td>4</td>
<td>0.21</td>
</tr>
<tr>
<td>15</td>
<td>2923</td>
<td>19</td>
<td>0.65</td>
<td>2349</td>
<td>574</td>
<td>14</td>
<td>0.60</td>
</tr>
<tr>
<td>16</td>
<td>3356</td>
<td>24</td>
<td>0.72</td>
<td>2210</td>
<td>1146</td>
<td>13</td>
<td>0.50</td>
</tr>
<tr>
<td>17</td>
<td>3498</td>
<td>24</td>
<td>0.69</td>
<td>2344</td>
<td>1154</td>
<td>14</td>
<td>0.60</td>
</tr>
<tr>
<td>18</td>
<td>4259</td>
<td>24</td>
<td>0.56</td>
<td>3315</td>
<td>944</td>
<td>19</td>
<td>0.57</td>
</tr>
<tr>
<td>19</td>
<td>5676</td>
<td>42</td>
<td>0.74</td>
<td>4289</td>
<td>1387</td>
<td>30</td>
<td>0.70</td>
</tr>
<tr>
<td>Total</td>
<td>34943</td>
<td>289</td>
<td>0.83</td>
<td>25261</td>
<td>9682</td>
<td>169</td>
<td>0.67</td>
</tr>
</tbody>
</table>

by guest on September 20, 2017 http://circep.ahajournals.org/ Downloaded from
underpowered to estimate the direct association of sex and tamponade.

Two large worldwide surveys on AF ablation by Cappato et al2,6 in 11,762 and 20,825 ablation procedures found tamponade to be the most common acute complication in 1.2% and 1.3% of patients, respectively. An European survey7 and a survey among Medicare beneficiaries18 found tamponade rates of 1.3% and 1.7%, respectively. However, none of these surveys2,6,7,18 provided data on sex-related complication differences. In our study, the tamponade rate (0.84%) was lower than that found in worldwide and European surveys. This could be explained by the lower median center volume, at least for the world surveys2,6 (37 and 275, respectively), as compared with 1267 in our present study.

Interestingly, our results demonstrate that the rate of tamponade decreases and is similar after 1000 procedures in men and women (0.87% and 0.73%, respectively). However, because only 25% to 30% of AF ablation procedures (28% in the current study) are performed in women12, only centers with total procedural volume of 1390 reach this figure in men compared with centers with procedural volume of 3570 who reach it in women.

Procedural Characteristics Related to Tamponade

The lower occurrence of tamponade in high-volume centers is unlikely to be related to different procedural routines among the participating centers. Power settings were overall similar and ICE/transesophageal echocardiography was not used in the majority of centers, including several high-volume centers with low event rates. Of note, few cases of tamponade were preceded by steam pops. Most cases of tamponade (56.2%) were presumably related to catheter manipulation in the left atrium or catheter ablation without sex difference. However, women tended to develop more tamponades during transseptal catheterization. Whether this may be related to a higher incidence of atrial septal aneurysm among women19 that may render transseptal puncture more difficult and thereby increases the tamponade risk deserves further study. The mechanism of
higher tamponade risk among women was not explored in the present study. Another possible explanation for increased tamponade risk in women may include thinner left atrial wall and lower atrial volume (which is related to a lower body surface area), especially in patients with AF.20,21

Mode of Management of Tamponade
Our study is the first to report the need for surgery for managing cardiac tamponade in a large-scale multicenter survey, as other reports on the mode of treatment of tamponade originate from smaller single or multicenter series.5,11,22 Most cases of tamponade were successfully handled by pericardiocentesis; however, in 16% of cases, surgery was required. In most instances surgery was preceded by pericardiocentesis. In only a minority of cases, surgery was the initial mode of treatment. Again, our results demonstrate that in high-volume centers the percentage of patients requiring surgery was lower. Nevertheless, a curve plot of center volume and the need for surgery demonstrate a non-negligible 10% incidence of patients requiring surgery even in centers performing >4000 ablation procedures.

Based on our present results and in agreement with the recent conclusions of the international Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation,23 we think that centers performing AF ablation should have skill in acute tamponade management including pericardiocentesis and on-site surgical backup. In our study, only 1% of patients died as a consequence of tamponade, and this relatively low incidence rate could be related to the fact that all participating institutions were academic centers with surgical facilities. Mortality

In a summarizing analysis of their 2 worldwide surveys, Cappato et al4 reported an incidence of 0.07% mortality during AF procedures. The most frequent cause of mortality was tamponade (responsible for 25% of deaths) and it occurred in 2% cases of tamponade. In our study, we found a lower incidence of 1% mortality in direct relation with tamponade. As for tamponade, this lower rate of mortality could be related to a larger mean center volume in our study. Also, as stated above, all institutions participating in our survey had surgical facilities. In contrast, the study of Cappato et al4 did not provide information on the availability of surgical backup for the patients who died because of tamponade, precluding the possibility of further elaborating the role of such backup in a course lethal to their patients.

Limitations
Participation in our survey was voluntary and the response rate of contributing centers (22%) was relatively low. However, it was similar to that obtained by Cappato et al4 in their surveys (24% and 20%, respectively). If nonresponse bias is large then the reported results need not be significant. Thus, the results while credible require further confirmation. In addition, we cannot assume how many nonrespondent centers were large or small centers. The present study involved many highly skilled academic institutions and therefore the quality of the findings may not be representative of the general population of patients undergoing AF ablation. Moreover, an inherent limitation of surveys is the self-selection involved in response. This may explain the lower rate of tamponade documented in our study as compared with that observed in the Medicare survey18 and previous reports.2,6,7

![Graph](image-url)
may likely be more frequently observed in women (ie, smaller left atrial size, heart size, and body mass index).

Finally, our study focus was on acute cardiac tamponade. It is known that tamponade occurrence and presentation after AF ablation may be delayed ≈45 days.25

Conclusions
This large-scale multicenter survey provides evidence for an ≈2-fold higher risk of tamponade during AF ablation procedures among women. Yet, the rate of tamponade is low among skilled academic centers. Both sex difference and center experience should be taken in account when obtaining informed patient consent before the procedure. In addition, the availability of immediate surgical backup is advised as a sizable percentage of patients with tamponade may require surgical intervention.

Disclosures
None.

Appendix
From the Department of Cardiology, Tel Aviv Sourasky Medical Center, Sacker Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel (Y.M., M.R., B.B.); Division of Cardiology, University of Michigan Medical Center, Ann Arbor (H.O., F.M.); Cardiovascular Division, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia (E.S.Z., F.E.M.); Asklepios Klinik St. Georg, Hamburg, Germany (R.T., K.-H.K.); Department of Electrophysiology, Leipzig Heart Center, Leipzig University, Leipzig, Germany (S.J., G.H.); Hôpital Cardiologique du Haut Lévêque, Service de Rythmologie, Bordeaux, France (A.D., P.J.); Texas Cardiac Arrhythmia Institute, St. David's Medical Center, Austin, TX (L.D.B.); Department of Biomedical Engineering, University of Texas, Austin (L.D.B., E.N.M., A.N.); Silicon Valley Cardiology, E Palo Alto, CA (R.A.W.); Department of Electrophysiology and Cardiac Pacing, Almazov Federal Heart, Blood, and Endocrinology Centre, Saint-Petersburg, Russian Federation (E.N.M., D.S.L.); Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA; Department of Cardiology, Massachusetts General Hospital, Boston, MA; Department of Biomedical Engineering, University of Pennsylvania, Philadelphia (E.S.Z., M.R., B.B.); Division of Cardiology, University of Michigan Medical Center, Ann Arbor, MI; Division of Cardiology, University of Michigan Medical Center, Ann Arbor (H.O., F.M.); Endocrinology Centre, Saint-Petersburg, Russian Federation (E.N.M., D.S.L.); Hospital of the University of Pennsylvania, Philadelphia (E.S.Z., F.E.M.); Asklepios Klinik St. Georg, Hamburg, Germany (R.T., K.-H.K.); Division of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA; Department of Biomedical Engineering, University of Texas, Austin (L.D.B., E.N.M., A.N.); Silicon Valley Cardiology, Palo Alto, CA (R.A.W.).

None.

Table 2. Cases of Tamponade Managed by Surgery Among the Participating Centers

<table>
<thead>
<tr>
<th>Institution</th>
<th>Tamponade Surgery, n (%)</th>
<th>Tamponade Surgery Men, n (%)</th>
<th>Tamponade Surgery Women, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>Women</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6 (33)</td>
<td>1 (0)</td>
<td>5 (2)</td>
</tr>
<tr>
<td>2</td>
<td>11 (18)</td>
<td>7 (29)</td>
<td>4 (0)</td>
</tr>
<tr>
<td>3</td>
<td>7 (28)</td>
<td>4 (50)</td>
<td>3 (0)</td>
</tr>
<tr>
<td>4</td>
<td>6 (0)</td>
<td>4 (0)</td>
<td>2 (0)</td>
</tr>
<tr>
<td>5</td>
<td>12 (35)</td>
<td>10 (20)</td>
<td>2 (1)</td>
</tr>
<tr>
<td>6</td>
<td>8 (25)</td>
<td>1 (25)</td>
<td>4 (1)</td>
</tr>
<tr>
<td>7</td>
<td>20 (25)</td>
<td>6 (30)</td>
<td>14 (2)</td>
</tr>
<tr>
<td>8</td>
<td>10 (10)</td>
<td>6 (0)</td>
<td>4 (1)</td>
</tr>
<tr>
<td>9</td>
<td>21 (19)</td>
<td>10 (20)</td>
<td>11 (2)</td>
</tr>
<tr>
<td>10</td>
<td>15 (2)</td>
<td>8 (13)</td>
<td>7 (14)</td>
</tr>
<tr>
<td>11</td>
<td>10 (30)</td>
<td>6 (29)</td>
<td>4 (1)</td>
</tr>
<tr>
<td>12</td>
<td>15 (33)</td>
<td>4 (26)</td>
<td>11 (3)</td>
</tr>
<tr>
<td>13</td>
<td>9 (11)</td>
<td>5 (20)</td>
<td>4 (0)</td>
</tr>
<tr>
<td>14</td>
<td>6 (17)</td>
<td>4 (25)</td>
<td>2 (0)</td>
</tr>
<tr>
<td>15</td>
<td>19 (36)</td>
<td>14 (25)</td>
<td>5 (1)</td>
</tr>
<tr>
<td>16</td>
<td>24 (3)</td>
<td>13 (23)</td>
<td>11 (0)</td>
</tr>
<tr>
<td>17</td>
<td>24 (0)</td>
<td>14 (0)</td>
<td>10 (0)</td>
</tr>
<tr>
<td>18</td>
<td>24 (5)</td>
<td>19 (26)</td>
<td>5 (0)</td>
</tr>
<tr>
<td>19</td>
<td>42 (5)</td>
<td>30 (2)</td>
<td>12 (0)</td>
</tr>
<tr>
<td>Total</td>
<td>289 (16)</td>
<td>169 (31)</td>
<td>120 (15)</td>
</tr>
</tbody>
</table>

Nevertheless, according to our results, we anticipate that the rates of cardiac tamponade and that of tamponade requiring surgery or culminating in death will be even higher in less experienced centers, especially in women.

As this is a large-scale multicenter study we could only gather limited individual patients’ characteristics. Therefore, we were unable to evaluate the potential role of individual operator experience and learning curves and distinguish the role of sex from that of associated confounding covariates that may likely be more frequently observed in women (ie, smaller left atrial size, heart size, and body mass index).

Figure 4. Association between the percent of tamponade leading to surgery and center volume. The regression line demonstrates an inverse linear association: \(r = -0.486 \), \(R^2 = 0.217 \), and \(P = 0.04 \).

Figure 4. Association between the percent of tamponade leading to surgery and center volume. The regression line demonstrates an inverse linear association: \(r = -0.486 \), \(R^2 = 0.217 \), and \(P = 0.04 \).

References

CLINICAL PERSPECTIVE
Cardiac tamponade is the most dramatic complication observed during atrial fibrillation (AF) ablation and the leading cause of procedure-related mortality. Whether patient’s sex is associated with a different risk for developing this complication is unknown. This large worldwide multicenter study involving 34,943 AF ablation procedures was designed to answer this question. The occurrence of tamponade during AF ablation procedures was found to be relatively rare (0.84%); however, women had an 83% higher risk for developing this complication. The risk of developing tamponade was inversely related to center volume with a substantial decrease in women risk in high-volume centers. Surgical management was required in 16% of tamponade cases irrespective of patient sex, whereas 1% of cases of tamponade resulted in death. To the best of our knowledge this is the largest study evaluating sex difference in the risk of tamponade during AF ablation. Center volume and patient sex should be taken in account when obtaining informed patient consent before the procedure. Also, surgical backup and acute management skills for treating tamponade are important in centers performing AF ablation. Additional research is needed to evaluate the potential role of other different covariates in the risk of tamponade that may likely be more frequently observed in women (ie, smaller left atrial size, heart size, and body mass index).
Effects of Sex on the Incidence of Cardiac Tamponade After Catheter Ablation of Atrial Fibrillation: Results From a Worldwide Survey in 34,943 Atrial Fibrillation Ablation Procedures

Yoav Michowitz, Michael Rahkovich, Hakan Oral, Erica S. Zado, Roland Tilz, Silke John, Arnaud Denis, Luigi Di Biase, Roger A. Winkle, Evgeny N. Mikhailov, Jeremy N. Ruskin, Yan Yao, Mark E. Josephson, Hildegard Tanner, John M. Miller, Jean Champagne, Paolo Della Bella, Koichirosi Kumagai, Pascal Defaye, David Luria, Dmitry S. Lebedev, Andrea Natale, Pierre Jais, Gerhard Hindricks, Karl-Heinz Kuck, Francis E. Marchlinski, Fred Morady and Bernard Belhassen

Circ Arrhythm Electrophysiol. 2014;7:274-280; originally published online February 11, 2014; doi: 10.1161/CIRCEP.113.000760

Circulation: Arrhythmia and Electrophysiology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3149. Online ISSN: 1941-3084

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circep.ahajournals.org/content/7/2/274

Data Supplement (unedited) at:
http://circep.ahajournals.org/content/suppl/2014/02/11/CIRCEP.113.000760.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Circulation: Arrhythmia and Electrophysiology* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Circulation: Arrhythmia and Electrophysiology* is online at:
http://circep.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL

Acknowledgements

We thank Dr. Ori Rogowski (Department Medicine C, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel) for statistical analysis support.

We also thank the following colleagues who shared their data with us:
Dr Christopher Piorkowski, Department of Electrophysiology, University of Dresden – Heart Center, Dresden, Germany.
Drs. William G. Stevenson and Eyal Nof, Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Dr. Emanuele Bertaglia, Cardiology Clinic, Department of Cardiological, Thoracic and Vascular Sciences, University of Padua, Italy.
Dr. Shinsuko Myazaki, Cardiovascular Center, Yokosuka Kyosai Hospital, Yokosuka, Kanagawa, Japan.
Dr. Michael R MacDonald, Golden Jubilee NationalHospital, Glasgow, Scotland, UK.
Drs. Demosthenes G. Katritsis and Ioannis Pantos, MSc, Athens Euroclinic, Athens, Greece.
Dr. Thomas Rostock, Department of Electrophysiology, University Heart Center, University Hospital Eppendorf, Hamburg, Germany.
Drs. Luigi Biasco and Fiorenzo Gaïta, Cardiology Department, School of Medicine, University of Turin, San Giovanni Battista Hospital, Turin and Cardinal Massaia Hospital, Asti, Italy.
Dr. Giovanni B. Forleo, Arrhythmia and Electrophysiology Center, St Ambrogio Clinical Institute, Milan, Italy.
Drs. José Carlos Pachón Mateos and Tasso J. Lobo, Hospital do Coração (HCor) and Instituto Dante Pazzanese de Cardiologia, São Paulo, Brazil.
Supplemental Table 1: Presumed mechanism of tamponade in 279 patients from 18 EP centers.

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>All patients</th>
<th>Males</th>
<th>Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transseptal puncture</td>
<td>30 (10.8%)</td>
<td>11 (6.7%)</td>
<td>19 (16.3%)</td>
</tr>
<tr>
<td>Catheter manipulation</td>
<td>64 (22.9%)</td>
<td>35 (21.5%)</td>
<td>29 (25%)</td>
</tr>
<tr>
<td>During ablation</td>
<td>93 (33.3%)</td>
<td>59 (36.2%)</td>
<td>34 (29.3%)</td>
</tr>
<tr>
<td>Unknown</td>
<td>92 (32.9%)</td>
<td>58 (35.6%)</td>
<td>34 (29.3%)</td>
</tr>
<tr>
<td>Total</td>
<td>279</td>
<td>163</td>
<td>116</td>
</tr>
</tbody>
</table>

P=0.046