Does Cardiac Resynchronization Therapy Benefit Patients With Right Bundle Branch Block

Left Ventricular Free Wall Pacing: Seldom Right for Right Bundle Branch Block

Kenneth C. Bilchick, MD, MS

In the United States, ≥5 million have heart failure (HF),1 ≥500,000 are diagnosed each year,2 and 2.5 million are hospitalized for their disease.3 In addition, ≈300,000 patients die from HF every year in the United States,2 and the 5-year survival in the Framingham study in men and women was determined to be 28% and 35%, respectively. These outcomes are known to be modified by QRS duration from the surface ECG. For example, the 3-year mortality rate in patients with HF and QRS duration >160 ms was reported to be 58% in 1 study, which represented nearly a 3-fold increase when compared with patients having a QRS duration under 120 ms.4 The Italian Network on Congestive Heart Failure has reported increased 1-year rates of sudden death and overall mortality in patients with left bundle branch block (LBBB),5 and RBBB has also been found to predict increased mortality in 7073 patients referred for nuclear exercise testing.6

During the past decade, cardiac resynchronization therapy (CRT) implemented as either a pacemaker only or implantable cardioverter defibrillator (ICD; CRT-D) has emerged as an common treatment for patients with HF with left ventricular ejection fraction (LVEF) <35%, severe HF (New York Heart Association [NYHA] class III–IV status), and intraventricular conduction delays, including both LBBB and RBBB. In particular, the Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure (COMPANION) trial7 demonstrated improved survival with CRT-D and a borderline improvement in survival for CRT pacemaker device (P=0.056) in patients with a QRS duration of ≥120 ms. The subgroup analysis from the main article also noted a greater improvement in survival with LBBB versus RBBB. The Cardiac Resynchronization in Heart Failure Study (CARE-HF)8 also enrolled patients with both RBBB and LBBB but required that patients with QRS durations of 120 to 149 ms have echocardiographic evidence of mechanical dyssynchrony.

More recently, other studies have evaluated CRT in patients with LBBB and RBBB with less severe HF symptoms and less severe LV dysfunction. The Multicenter Automatic Defibrillator Implantation-Cardiac Resynchronization Therapy (MADIT-CRT) trial, which compared CRT-D with a standard ICD in 1820 patients NYHA class I to III patients with LVEF ≤30% and a QRS duration of ≥130 ms, found that patients with LBBB had much better outcomes (hazard ratio [HR], 0.47 [P<0.001] for the primary end point of HF event or death) when compared with patients with non-LBBB (corresponding HR, 1.24, P=NS).9 The Resynchronization–Defibrillation for Ambulatory Heart Failure Trial (RAFT) also showed decreased HF hospitalizations with CRT-D in patients with NYHA class II and III HF. These patients had a mean QRS duration of 157 ms with 80% having a LBBB or right ventricle (RV)–paced morphology.10 The Resynchronization...
Reverses Remodeling in Systolic Left Ventricular Dysfunction (REVERSE) trial found decreased rates of HF hospitalization and improved LV remodeling in patients with less severe HF (LVEF ≤ 40%; NYHA class I–III HF; QRS duration ≥ 120 ms; and LV end-diastolic dimension of ≥ 55 mm). In patients with HF with RBBB or LBBB, much of the LV must be activated via intramyocardial conduction because of the lack of efficient conduction through the specialized conduction fibers. Electric conduction patterns in HF and LBBB have been described previously.18–20 From the anterolateral RV, the endocardial conduction proceeds across the septum slowly to activate the LV. The conduction wave then proceeds around a functional anterior line of block with subsequent conduction inferiorly toward the LV apex and eventual activation of the basal posterolateral wall of the LV = 80 to 150 ms after the initial activation of the septum. Patients with conduction times on the higher end of this range typically have longer transseptal conduction times.

With RBBB, the LV septum is activated first, and then conduction proceeds across the septum toward the RV. As a result, there is late activation of the basolateral RV. Although this represents the typical activation in RBBB, patients with HF and RBBB based on the 12-lead ECG may not have this typical activation pattern in the LV. These observations date back to the 1940s from studies by Unger et al22 and Richman et al21 on what they called LBBB masquerading as RBBB. The surface electrocardiograms in these patients had precordial lead findings consistent with RBBB and limb lead findings consistent with LBBB. Using vectorcardiography, they found that LV activation was different from what was commonly found in RBBB or LBBB. On pathological correlation, they found evidence of infarction and fibrosis in the septum in the areas of both bundle branches and elsewhere. As a result, Unger et al22 concluded that the masquerade was really a form of bilateral bundle branch disease.

A more recent study by Fantoni et al23 using 3-dimensional electrophysiology contact mapping has yielded additional insights into different electric activation patterns seen in RBBB in patients with HF and scar. In this study, electroanatomic

Electrical Activation in RBBB and LBBB
AV conduction proceeds via the AV node through the His bundle and the bundle branches. The right bundle branch proceeds along the right interventricular septum and terminates in the Purkinje fibers that extend to the RV apex. In contrast, the left bundle branch courses through the septum and gives rise to the anterior and posterior fascicles, as well as a third branch supplying the mid-LV septum, before continuing into the Purkinje fiber network. In normal hearts, the LV septum is activated before the RV septum. In this way, the septum is activated from the apex toward the base and lateral walls, with an overall conduction time of 50 to 80 ms.17

The prevalence of RBBB has been low in these clinical CRT studies, which has limited interpretation of the RBBB subgroup results. Similarly, in our recent analysis of CRT-D implants in Medicare patients from the original ICD registry maintained by the Iowa Foundation for Medical Care (IFMC) during 2005 and 2006, only 11% of the nearly 15,000 patients with CRT-D implants had a RBBB.13 Until recently, the guidelines for ICDs in HF recommended that patients referred for CRT-D have a QRS duration of ≥ 120 ms and did not distinguish between patients with RBBB and LBBB.13 This changed recently with the publication of the 2012 guidelines,14 which have now increased the strength of the recommendation for CRT-D in patients with LBBB and weakened the recommendations for CRT-D in patients with RBBB (Table).

The present article will explore the rationale for using QRS morphology and QRS duration to guide the strength of indication for CRT implantation based on previous clinical trials, registries, and physiological studies. The electromechanical effects of RBBB and LBBB on the RV and LV will also be explored, and clinical outcomes with CRT in RBBB will be reviewed. In particular, the argument is made that there is seldom a role for LV free wall pacing in patients with HF and a RBBB, although the situation becomes more complex when there is additional left-sided conduction system disease and myocardial scar,15,16 both of which can cause additional electric and mechanical abnormalities in these patients with HF. The article will also explore the relative efficacy of RV versus biventricular pacing in patients with HF and RBBB.

Table. 2012 American Heart Association/American College of Cardiology Foundation/Heart Rhythm Society Class I and IIa Indications for CRT

<table>
<thead>
<tr>
<th>Class I</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRT is indicated for patients with LVEF ≤ 35%, sinus rhythm, LBBB with a QRS duration ≥ 150 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class IIa</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRT can be useful for patients who have LVEF ≤ 35%, sinus rhythm, LBBB with a QRS duration of 120–149 ms, and NYHA class II, III, or ambulatory IV symptoms on GDMT</td>
</tr>
<tr>
<td>CRT can be useful for patients who have LVEF ≤ 35%, sinus rhythm, a non-LBBB pattern with a QRS duration ≥ 150 ms, and NYHA class III/ambulatory class IV symptoms on GDMT</td>
</tr>
<tr>
<td>CRT can be useful in patients with atrial fibrillation and LVEF ≤ 35% on GDMT if (1) the patient requires ventricular pacing or otherwise meets CRT criteria and (2) AV nodal ablation or pharmacological rate control will allow near 100% ventricular pacing with CRT</td>
</tr>
<tr>
<td>CRT can be useful for patients on GDMT if (1) the patient requires ventricular pacing or otherwise meets CRT criteria and (2) AV nodal ablation or pharmacological rate control will allow near 100% ventricular pacing with CRT</td>
</tr>
</tbody>
</table>

Reprinted from Tracy et al14 with permission of the publisher. Elsevier. CRT indicates cardiac resynchronization therapy; GDMT, Guideline-Directed Medical Therapy; IV, intravenous; LBBB, left bundle branch block; LVEF, left ventricular ejection fraction; and NYHA, New York Heart Association.
mapping of the RV and LV was performed in 100 patients with HF, of whom 6 had RBBB. Five of the 6 patients with RBBB had ischemic cardiomyopathy, and RBBB patients had significantly worse hemodynamic profiles with a higher NYHA functional class and a lower LVEF. The latest activation in the RV was on the lateral free wall or outflow tract, and RV activation times were significantly longer in RBBB when compared with that in LBBB. Among patients with RBBB, 2 patients had 2 septal breakthrough sites, whereas the other 4 had just 1 septal LV breakthrough site, likely because of left-sided bundle branch disease. Transseptal activation was much quicker in RBBB (2 ms on average, compared with 47 ms in LBBB). As shown in Figure 1C, the latest activated site in the LV for patients with LBBB was the lateral wall, with activation times in this area ranging from 40 to 170 ms.

In the RBBB example with 2 septal breakthrough sites (Figure 1A), the latest LV activation site was also the lateral free wall, but the activation time to this area was not as long as the activation delay to this same area in the LBBB example (Figure 1C) based on the color time scale in Figure 1. In contrast, the RBBB example patient (Figure 1B) with only a single more posterior LV septal breakthrough site had a more focal area of delayed electrical activation on the LV anterior wall.

Of note, it is possible that epicardial electrical activation patterns were somewhat different from endocardial activation patterns. In addition, although the LV electrical activation patterns presented in the article are certainly interesting, the mechanical activation patterns in these patients were not evaluated. Even so, the findings are provocative. Perhaps the most impressive of these findings was the markedly delayed activation of the RV in RBBB when compared with LBBB. This has implications for the role of RV pacing in patients with RBBB and HF, as discussed subsequently.

Mechanical Activation in RBBB and LBBB

LBBB Mechanics

Ultimately, the most important factor in identifying optimal candidates for CRT is regional mechanical activation due to bundle branch block and overall mechanical LV dysynchrony.24,25 The mechanical effects LBBB are shown schematically in Figure 2. Muscle activation curves (elasticity) are shown for LV regions with early and delayed stimulation.26 When one curve is higher than another, this region of the wall is relatively stiffer and thus can stretch the opposing wall. Subtracting one from the other yields the difference plot, which would be the apparent discoordination motion of the wall. Septal areas often shorten ≤10% before ejection but have minimal subsequent systolic shortening; thereafter, they are stretched. The lateral wall is prestretched as much as 15% in early systole and then undergoes systolic shortening.

As a result, the principal factors in LBBB that contribute to decreased work in systole and the symptoms of HF associated with mechanical dyssynchrony are lateral wall stretch instead of contraction in early systole and decreased septal work throughout systole associated with late systolic septal stretch instead of contraction. Consequently, in a patient with typical LBBB dyssynchrony, there is simultaneous regional stretch and contraction at any point in the cardiac cycle. As a result, regional circumferential strain curves may resemble a sine wave pattern in dyssynchronous HF, as shown in Figure 3, where negative circumferential strain represents contraction and positive circumferential strain represents stretch.27 Because the goal of resynchronization is to implant a lead in a

Figure 1. Electrical activation contact maps. Electrical activation maps are shown for heart failure (HF) with right bundle branch block RBBB (A), HF with RBBB and left bundle branch disease (B), and HF with left bundle branch block (LBBB; C). Areas of late activation and time to late activation vary based on the conduction abnormality, as described in the text. Reprinted from Fantoni et al23 with permission of the publisher. John Wiley and Sons (2005). LV indicates left ventricle; and RV, right ventricle.

Figure 2. Left ventricular physiology with dyssynchronous heart failure. The curves are based on ventricular elastance (stiffening). The vertical difference (thin solid line) defines how one wall would push the other to generate dyssynchrony. This is most marked in early systole (isovolumic contraction) and then late at end-systole/early diastole. Reprinted from Bilchick et al29 with permission of the publisher. Spring Science & Business Media (2007).
late-activated, prestretched site on the LV free wall to stimulate mechanically late-activated regions to contract on time with the early activated septum, the degree of opposing regional stretch and contraction influences the likelihood of CRT response.28

Quantitative Assessment of LBBB Mechanics Before and After Resynchronization

With this in mind, the circumferential uniformity ratio estimate (CURE) was developed to characterize the extent of simultaneous stretch and contraction occurring in the LV as a result of mechanical dyssynchrony. Because CURE is based on Fourier analysis of regional strain, regional times to peak strain do not have to be measured. Fourier transform analysis is based on the principle that complex functions may be approximated by a series of simpler harmonic functions with frequencies that increase with the order of the Fourier term. CURE uses only the relative contributions of the zero- and first-order Fourier terms to the overall function of circumferential strain plotted against segment. In this way, the zero-order Fourier term for the function of circumferential strain plotted against segment is associated with synchrony because it corresponds to a straight line and indicates that circumferential strain in all segments is the same (Figure 4, upper plot). In contrast, the first-order term for the circumferential strain versus segment function is associated with dyssynchrony because it corresponds to a low-frequency harmonic function that is positive for some segments indicating stretch and negative for other segments indicating contraction (Figure 4, lower plot).

CURE makes use of the zero-order power and first-order power from the Fourier analysis of this function to index dyssynchrony as a ratio of zero-order power to the sum of zero-order and first-order power. Because the first-order power becomes greater in the case of severe dyssynchrony, the numerator will be much smaller than the denominator, and the CURE will approach 0. In the case of LV synchrony, the first-order power will be small, the numerator will be similar to the denominator, and CURE will approach 1. In this way, CURE generates a number between 0 and 1 that reflects the extent of inefficient LV contraction. In fact, CURE as determined from cardiac magnetic resonance has been shown to be highly predictive of CRT response.27,28 In addition, CURE provides superior discrimination of HF with LBBB when compared with indices based on time to peak strain.29

Helm et al30 have recently evaluated the hemodynamic effect on overall synchrony of resynchronization pacing at various sites in the LV in a canine model of HF and LBBB. HF was induced with tachycardia pacing, and the left bundle branch was ablated with radiofrequency energy. At each LV pacing site, global cardiac function was assessed with a conductance catheter, and mechanical synchrony was assessed based on cardiac magnetic resonance myocardial tagging to generate the CURE dyssynchrony parameter. Optimal improvements in LV function were achieved with LV lateral free wall pacing sites, as shown in Figure 5. The potential pacing sites on...
the LV free wall that yielded ≥70% of the maximal global LV function and synchrony (based on CURE) are shown. It is striking that these areas are basically the same, as shown in the overlay panel. In summary, the confluence of pacing sites generating maximal improvements in synchrony by CURE and LV global function supports that CURE is an effective measure for the assessment of optimal pacing effects in LV resynchronization pacing.

Quantitative Assessment of RBBB Mechanics Before and After Resynchronization

A similar canine model was used by Byrne et al.31 to demonstrate the extent of dyssynchrony that results from RBBB as opposed to LBBB. The canines underwent tachycardia pacing into HF, with half undergoing catheter ablation of the right bundle branch and the other half undergoing ablation of the left bundle branch. CRT systems with pacing leads in the right atrium, RV, and LV were im implanted in all, and the relative effects of RV pacing, LV pacing, and biventricular pacing were assessed in HF with RBBB versus HF with LBBB. At baseline, QRS durations for both RBBB and LBBB HF were approximately twice as long as those for normal animals. The mean LVEFs in RBBB and LBBB were 32.6% and 25.1%, respectively, whereas the mean RVEFs in RBBB and LBBB were 15.5% and 25.1%, respectively. As shown in Figure 6, the CURE was significantly lower in LBBB (0.58±0.09) versus RBBB (0.80±0.03; P<0.05), indicating much less dyssynchrony in RBBB HF when compared with LBBB HF.

Both RV single-site pacing and biventricular pacing similarly reduced the QRS duration in RBBB HF by a mean of 28% to 34%, whereas LV-only pacing had no effect on QRS duration.

As shown in Figure 7, RV pacing and biventricular pacing resulted in improvements in LV dP/dtmax in RBBB HF, but only RV pacing resulted in a significant improvement in CURE from baseline in RBBB HF. Biventricular pacing also prolonged isovolumic LV relaxation in RBBB HF. In addition, the improvement in dP/dtmax with biventricular pacing was much less in RBBB HF when compared with that in LBBB HF. LV pacing alone was harmful in RBBB HF, worsening LV global function and dyssynchrony as assessed by CURE. The synchrony achieved with just RV pacing and the marked worsening of LV mechanics with LV-only pacing together indicate that most of the benefit derived from biventricular pacing in this model was due to the RV pacing component rather than the LV pacing component. Of note, the RVEF improved dramatically with both RV (62.2±15.2%) and biventricular pacing (55.4±13.0%).

In our own clinical series of 75 patients referred for CRT with preprocedure cardiac magnetic resonance, the median CURE in patients with RBBB was 0.66 (interquartile range, 0.60–0.81), and significant LV reverse remodeling with at least a 15% reduction in the LV end-systolic volume was uncommon with RBBB.28 In addition, 50% of these patients with RBBB and HF experienced the clinical end point of death, ventricular assist device, or heart transplantation during a median follow-up of 2.6 years.

Electromechanical Mechanisms in RBBB

There are several key physiological factors that explain why LV free wall pacing resulted in greater hemodynamic improvements in HF with LBBB in these studies. First, RBBB HF is associated with significantly lesser dyssynchrony than LBBB HF. Second, in the case of pure RBBB HF, the septum rather
than the LV free wall contracts later. For this reason, one would not necessarily expect hemodynamic improvements from LV free wall pre-excitation in RBBB HF. Third, the LV free wall is large without any other support structure to prevent stretch, whereas the LV septum has a smaller area and is supported against stretch by the pressure in the RV cavity. As a result, the improvement in LV mechanics in RBBB HF with RV-only pacing is significantly lesser than the improvement in LV mechanics in LBBB HF with LV-only pacing.

The discrepant findings of delayed LV free wall electric activation in RBBB HF as demonstrated by Fantoni et al versus the lack of delayed LV free wall activation in the present study also deserve particular comment. It is likely that many of the 6 clinical patients with RBBB HF studied by Fantoni et al also had coexisting left bundle branch disease, as discussed earlier. This contrasts with the present study by Byrne et al, which evaluated the effect of resynchronization pacing on LV mechanics in a model of pure RBBB. In addition, there may be some discordance between electric and mechanical activation, particularly when evaluating the effects of pacing interventions. For example, previous work by Leclercq et al showed that while both LV single-site pacing and biventricular pacing improved global function in LBBB HF, LV single-site pacing actually prolonged the LV electric activation time, while biventricular pacing shortened the LV electric activation time.

Clinical Outcomes in Trials, Series, and Registries

RBBB Outcomes in Clinical Trials

One of the largest CRT clinical trial analyses of RBBB was a pooled analysis of 61 patients from the Multicenter InSync Randomized Clinical Evaluation (MIRACLE) and Contak CD trials, of which 34 were randomized to CRT and 27 to the control group. These 61 patients amounted to 6% of the total of 1034 patients enrolled in these 2 trials. Outcome variables included LVEF, NYHA class, 6-minute hall walk distance, Minnesota Living with HF quality-of-life score, and peak oxygen consumption (peak VO₂). The only parameter that was improved after 6 months was peak VO₂ in patients with RBBB randomized to CRT (1.1 mL/kg per minute with CRT versus 2.2 mL/kg per minute in controls; P=0.030). A smaller cohort of patients with RBBB just from the MIRACLE trial (analyzed by different investigators) similarly showed subjective improvements in NYHA class with CRT, but again there were no significant differences in the change in peak VO₂ between CRT and controls (1.2 mL/kg per minute with CRT versus 0 mL/kg per minute in controls; P=0.008).

LVEF data were not reported in this study. Of note, even the subjective improvement in NYHA class for patients with RBBB was marginal in the MIRACLE trial. At baseline, 24% of patients with RBBB were class I and the remaining 76% were class III; after CRT, no patients were class I, 19% of patients were now class IV, 24% of patients were still class III, and 57% of patients were class II. As noted previously, subgroup analyses of the COMPANION trial and MADIT-CRT trial also did not support a benefit for CRT in patients with HF and RBBB.

Similarly, the absolute change in LVEF during a period of 6 months was significantly greater in the CRT group when compared with that in the control group in both the entire MIRACLE cohort (4.6%; 95% CI, 3.2% to 6.4% versus −0.2%; 95% CI, −1.0% to 0.5%; P<0.001) and the entire CONTAK-CD cohort (5.1±0.7% versus 2.8±0.7%; P=0.020). A smaller cohort of patients with RBBB just from the MIRACLE trial (analyzed by different investigators) similarly showed subjective improvements in NYHA class with CRT, but again there were no significant differences in the change in peak VO₂ between CRT and controls (1.2 mL/kg per minute with CRT versus 0 mL/kg per minute in controls; P=0.008).

![Figure 8. Outcomes after cardiac resynchronization therapy (CRT) in the Medicare population based on the baseline bundle branch morphology. Kaplan–Meier curves for overall survival are shown in A, indicating that patients with right bundle branch block (RBBB) have worse survival after CRT. As shown in B, survival after CRT is best for left bundle branch block (LBBB) with nonischemic cardiomyopathy (NICM) and worst for RBBB with ischemic cardiomyopathy (ICM). Reprinted from Bilchick et al with permission of the publisher. Wolters Kluwer Health (2010). IVCD refers to nonspecific intraventricular conduction delay.](image-url)
RBBB Outcomes in Clinical Series and Registries

With respect to clinical series and registry studies, Rickard et al.\(^37\) reported CRT outcomes based on QRS morphology in 542 patients with new CRT implants at a single center. Of these patients, 38 (7.0%) had RBBB. Of note, ischemic cardiomyopathy was present in 76.3% of patients with RBBB and only in 49.5% with LBBB \((P<0.0001)\), consistent with the recent observation that patients with HF and RBBB tend to have more scar, commonly in an anteroseptal distribution, when compared with patients with LBBB.\(^38\) In patients with LBBB studied by Rickard et al, the LVEF increased from 21.9±7.6% to 32.0±13.1%, but the LVEF was similar before and after CRT in RBBB (23.9±6.8% versus 25.8±10.0%). The change in the NYHA class was also much greater in patients with LBBB. Although there were significant differences in mortality when comparing patients with LBBB, RBBB, and a nonspecific intraventricular conduction delay (16.2% in LBBB, 26.3% in RBBB, and 29.7% in nonspecific intraventricular conduction delay) during a mean follow-up of 3.4 years based on the log-rank test \((P=0.04)\), RBBB was not associated with a statistically significant increase in mortality with either univariate Cox regression (HR, 1.46; 95% CI, 0.7–3.06; \(P=0.71)\) or multivariate Cox regression adjusted for age, sex, type of cardiomyopathy, baseline QRS duration, renal dysfunction, and baseline EF (HR, 1.1; 95% CI, 0.61–2.13; \(P=0.84\)).

In addition, a small series of 12 patients with RBBB and concomitant disease of the left-sided conduction system reported improvements in LV dyssynchrony based on tissue Doppler imaging in 9 of these 12 patients, but the overall LVEF in all patients was unchanged at 12 months when compared with the baseline measurement (24±6% versus 26±8%; \(P=NS\)). The existence of left-sided conduction system disease was based on ECG morphology and abnormal QRS axes (left axis in 8 patients and right axis in 4 patients). A marginal improvement in the LV end-diastolic diameter was reported, but this is not the currently accepted measure of LV reverse remodeling after CRT, which is a 15% improvement in the LV end-systolic volume. They also reported an improvement in metabolic equivalents before and after CRT, but more objective peak VO\(_2\) testing was not reported. Because currently accepted echocardiographic criteria for LV reverse remodeling as a result of CRT were not demonstrated and the study design was observational, this study does not provide strong evidence that patients with RBBB and HF benefit from CRT. It is also remarkable that there was still no overall improvement in LVEF even though all patients had abnormal QRS axes likely because of concomitant left-sided conduction system disease.

A larger single-center series with 636 patients undergoing CRT compared outcomes in the 10% of patients having RBBB other patients having LBBB.\(^40\) Survival free of heart transplantation or ventricular assist device was significantly greater in patients with LBBB when compared with those with RBBB, even after adjustment for other covariates in a Cox multivariable survival model (HR, 1.75; 95% CI, 1.04–2.94). There was no overall difference in LVEF before and after CRT in patients with RBBB, whereas patients with LBBB experienced a 22.7% improvement in LVEF.

We recently obtained similar results in a study of ≈15000 Medicare patients enrolled in the ICD Registry maintained by the Iowa Foundation for Medical Care in 2005 to 2006.\(^12\) Among 14946 registry patients receiving CRT during this time period, the 1638 (11.0%) with RBBB had decreased survival when compared with patients with LBBB (Figure 8). The HR for death with RBBB was 1.44 (95% CI, 1.26–1.65) after adjustment for other covariates, including NYHA class.
age, and ischemic cardiomyopathy, which were also strong predictors of decreased survival after CRT.

Of particular interest, bundle branch morphology and ischemic cardiomyopathy both had negative independent effects on survival, as also shown in Figure 8. Patients with RBBB and ischemic cardiomyopathy had the worst prognosis, with an ≈2-fold increased hazard for mortality (HR, 1.99; 95% CI, 1.75–2.26) when compared with patients with LBBB and non-ischemic cardiomyopathy.22 In this regard, it is interesting that the series by Rickard et al17 showed an increased prevalence of ischemic cardiomyopathy in patients with RBBB, and recent cardiac magnetic resonance data from Strauss et al18 show that patients with RBBB and HF are more likely to have large anteroseptal scar when compared with patients with LBBB and HF. This increased scar burden and increased prevalence of ischemic cardiomyopathy associated with RBBB may also help explain why patients with RBBB as a whole tend to have more unfavorable outcomes after CRT than patients with LBBB.

Right Ventricular Resynchronization in RBBB
The study by Byrne et al31 suggested that sequential atrial-RV pacing is clearly superior to LV pacing in HF with RBBB and also has certain advantages when compared with biventricular pacing in this setting. RV pacing was also evaluated prospectively in another study of 7 patients with RBBB and RV dysfunction, many of whom had congenital heart disease.41 LV global function was intact at baseline with a mean cardiac index of 2.85±1.19 L/min per square meter. Sequential atrial-RV pacing was superior to atrial-only pacing for both improvement in RV dP/dt max and LV cardiac index. As shown in Figure 9, the RV dP/dt max increased by 22% in patients with RBBB and RV pacing. This was somewhat less than the 43% increase in LV dP/dt max with LV free wall pacing in 10 patients with HF and LBBB described previously by Nelson et al32 but actually greater than the 14% increase in LV dP/dt max with LV free wall pacing in the Pacing Therapies for Congestive Heart Failure II (PATH-CHF-II) study.41 Also shown in Figure 9, 6 of 7 patients also had increased LV cardiac index with RV pacing. The mean cardiac index with DOO pacing was 3.4±1.4 L/min per square meter, which was 17±8% greater than with AOO pacing, and the cardiac index in 1 patient increased by as much as 44% with RV pacing.41 The potential explanations for this improvement include correction of systolic dysfunction in the LV septum, improvement in LV diastolic performance, and improvement of LV output through correction of the RV functional abnormality. These data are consistent with other data from the canine study41 and further support the concept that any benefit with biventricular pacing in patients with RBBB and HF may result from RV pacing rather than LV pacing.

Conclusions
The clinical data on CRT in RBBB and HF are based on subgroup analyses from clinical trials and results from observational series and registries. This allows us to make only associations rather than definitive conclusions about the effectiveness of CRT in patients with RBBB and HF. Without an adequately powered randomized clinical trial of CRT in patients with RBBB and HF, there is not sufficient evidence to support the conclusion that there is no role for CRT in these patients. Even so, it is remarkable that the clinical data available have not shown consistent improvement in objective end points, such as LVEF or peak VO2, with CRT in the setting of RBBB. Furthermore, a large registry study has shown decreased survival after CRT for patients with RBBB and HF when compared with those with LBBB and HF. In addition, clinical cardiac magnetic resonance scar imaging data and data from animal models offer additional insights into why patients with RBBB and HF may have less favorable outcomes after CRT. In conclusion, additional clinical studies of the role of CRT in patients with RBBB and HF would be of interest in helping to inform appropriate clinical recommendations for potential CRT candidates with RBBB, and assessment of myocardial scar burden with advanced cardiac imaging may also be helpful as well.

Sources of Funding
This work was supported by Dr Bilchick’s National Institutes of Health K23 grant HL094761.

Disclosures
None.

References
by guest on July 8, 2017 http://circep.ahajournals.org/ Downloaded from

23. 19.
22.
21.
20.
19.
18.
17.
16.
15.
14.
13.
12.

heart failure.

patterns of septal activation in patients with left bundle branch block and

of Thoracic Surgeons.

to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation

Abnormalities: a report of the American College of Cardiology/American

HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm

Ornato JP, Page RL, Riegel B, Tarkington LG, Yancy CW. ACC/AHA/

LF, Hunt SA, Krumholz HM, Kushner FG, Lytle BW, Nishimura RA,
Buller CE, Creager MA, Ettinger SM, Faxon DP, Halperin JL, Hiratzka
LW, Sweeney MO, Smith SC Jr, Jacobs AK, Adams CD, Anderson JL,
Kas...
Response to Kenneth C. Bilchick, MD, MS

Angelo Auricchio, MD, PhD, Joost Lumens, PhD, Frits W. Prinzen, PhD

There is little doubt that without an adequately powered randomized clinical trial of cardiac resynchronization therapy (CRT) in patients with right bundle branch block (RBBB) and heart failure (HF), there is not sufficient evidence to support the conclusion that there is no role for CRT in these patients. To overcome this major lack in our knowledge, an individual patient meta-analysis of 5 randomized trials assessing the effects of CRT on morbidity and mortality in patients with symptomatic HF has been recently conducted. The findings suggested that patients with RBBB may derive a survival benefit similar to that observed in patients with left bundle branch block. The univariate frailty models evaluating the effect of CRT in prespecified subgroups on all-cause mortality indicated an hazard ratio of 0.66 (95 confidence interval, 0.55–0.78) in patients with left bundle branch block and an hazard ratio of 0.74 (95 confidence interval, 0.44–1.23) in patients with RBBB. The wide confidence intervals, however, indicate great variability in the outcome of patients with RBBB. Of note, the univariate frailty models evaluating the effect of CRT on the combined end point of death or HF hospitalization showed a modest (if any) reduction in patients with RBBB treated with CRT (0.94; 95 confidence interval, 0.65–1.37). The comparison of the effect of CRT on death alone with that on the combined end point (death or HF hospitalization) indicates a higher rate of HF hospitalizations in patients with RBBB treated with CRT when compared with the control group. A similar trend on HF hospitalization in patients with RBBB was observed in Multicenter Automatic Defibrillator Implantation—Cardiac Resynchronization Therapy (MADIT-CRT) study as well. Seeking a role of CRT in patients with RBBB, we think that the application of CRT should be advised after a mechanistic model, also supported by computer simulation. In light of the increased complexity, procedure time, follow-up requirements, and higher costs associated with CRT with implantable cardioverter defibrillator relative to standard implantable cardioverter defibrillator implantation, CRT implantation may be warranted only in those patients with clear LV mechanical dyssynchrony, whereas in the other patients the role of conventional CRT is rather limited. After this reasoning, we stated that CRT may be applied wrongly in those patients with RBBB without sufficient concomitant left ventricular dyssynchrony. Finally, Bilchick et al and we agreed that in RBBB, the major improvement comes from right ventricular pacing (mirroring the primary effect of left ventricular pacing in left bundle branch block). Again our computer simulation suggested some improvement in left ventricular function when pacing the right ventricular at the appropriate site, but we shall not forget that right ventricular pacing may primarily improve right ventricular function in patients with RBBB. In conclusion, the role of CRT in RBBB is still to be fully defined, which urges more studies on better assessment of electric and mechanical left ventricular delay in these patients.

Reference

Does Cardiac Resynchronization Therapy Benefit Patients With Right Bundle Branch Block: Left Ventricular Free Wall Pacing: Seldom Right for Right Bundle Branch Block

Kenneth C. Bilchick

Circ Arrhythm Electrophysiol. 2014;7:543-552
doi: 10.1161/CIRCEP.113.000747

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circep.ahajournals.org/content/7/3/543

Data Supplement (unedited) at:
http://circep.ahajournals.org/content/suppl/2016/04/13/CIRCEP.113.000747.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Arrhythmia and Electrophysiology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Arrhythmia and Electrophysiology is online at:
http://circep.ahajournals.org//subscriptions/
Je srdeční resynchronizační léčba přínosná u pacientů s blokádou pravého Tawarova raménka?

Stimulace volné levé komory je jen málokdy to pravé v případě blokády pravého Tawarova raménka

Kenneth C. Bilchick, MD, MS

Srdečním selháním trpí ≥ 5 milionů obyvatel ve Spojených státech,1 ročně je diagnostikováno ≥ 500 000 nových případů tohoto onemocnění2 a 2,5 milionů pacientů je pro toto onemocnění každoročně hospitalizováno.3 Navíc asi 300 000 pacientů ročně na toto onemocnění ve Spojených státech umírá.2 Pětileté přežití pacientů se srdečním selháním bylo ve Framinghamské studii 28 % u mužů a 35 % u žen. Mortalitu dále modifikuje šíře komplexu QRS na EKG. V jedné studii byla například tříletá mortalita u pacientů se srdečním selháním a šíří komplexu QRS > 160 ms 58 %, což bylo téměř 3krát více než u pacientů s šíří komplexu QRS < 120 ms.4 Výsledky publikované Italian Network on Congestive Heart Failure ukazovaly vyšší jednoletý výskyt náhlé srdeční smrti a úmrtí ze všech příčin u pacientů s blokádou levého Tawarova raménka (BLRT).5 Blokáda pravého Tawarova raménka (BPRT) byla rovněž prediktorem vyššího úmrtného rizika u pacientů s komplexem QRS ≥ 120 ms. Zejména studie COMPANION (Comparison of Medical Therapy, Pacing, and Defibrillation in Heart Failure)6 prokázala vyšší úmrtí u pacientů s blokádou levého Tawarova raménka (BLRT) a pacientů s QRS ≥ 120 ms ve srovnání s pacienty s QRS < 120 ms. V dalších studiích byl hodnocen přínos BIV-KS u pacientů s BLRT a BPRT s menší závažností srdečních selhání a menší závažností funkční senility levé komory (L.K.). Studie MADIT-CRT (Multicenter Automatic Defibrillator Implantation-Cardiac Resynchronization Therapy), která srovnávala BIV-KS se standardním implantabilním kardioverterem-defibrilátorom (ICD) u 1 820 pacientů ve funkční třídě NYHA I až III s EFLK ≤ 30 % a šířkou komplexu QRS ≥ 130 ms, prokázala u pacientů s BLRT výrazné zlepšení primárního cílového ukazatele (epizoda srdečního selhání a úmrtí; poměr rizik [HR] 0,47; p < 0,001) ve srovnání s pacienty bez BLRT (korespondující HR 1,24; p = NS). Studie RAFT (Resynchronization–Defibrillation for Ambulatory Heart Failure) rovněž demonstrovala u pacientů s srdečním selháním ve funkční třídě NYHA II a III po implantaci BIV-ICD snížení počtu hospitalizací pro srdeční selhání. Tito pacienti měli průměrnou šíři QRS kom-

Názory vyjádřené v tomto článku se nemusí nutně shodovat s názory editorů nebo odborné společnosti American Heart Association.

Pracovitě autoré: Cardiovascular Division, Department of Medicine, University of Virginia Health System, Charlottesville.

Korespondenční adresa: Kenneth C. Bilchick, MD, MS, Department of Medicine, Cardiology/Electrophysiology, University of Virginia Health System, PO Box 800158, Charlottesville, VA 22908. E-mail bilchick@virginia.edu

(Circ Arrhythm Electrophysiol. 2014;7:543-552.)

© 2014 American Heart Association, Inc.

Circ Arrhythm Electrophysiol is available at http://circep.ahajournals.org

DOI: 10.1161/CIRCEP.113.000747
plexu 157 ms a 80% z těchto pacientů mělo BLRT nebo morfologii QRS při pravokomorové stimulaci.10 Ve studii REVERSE (Resynchronization Reverses Remodeling in Systolic Left Ventricular Dysfunction) u pacientů s méně závažným srdečním selháním (EFLK ≤ 40%; říða NYHA I–III; QRS ≥ 120 ms a enddiastolický rozměr LK ≥ 55 mm) došlo ke snízení počtu hospitalizací pro srdeční selhání a zlepšení remodelace LK.11

V těchto klinických studích testujících SRL byl nízký podíl nemocných s BPRT, což omezovalo interpretaci výsledků u této podskupiny nemocných. Stejně tak i v naši nedávné analýze dat pacientů ze systému Medicare získaných z původního ICD registru vedeného Iowa Foundation for Medical Care (IFMC) v letech 2005 a 2006 mělo BPRT pouze 11% z téměř 15 000 nemocných s implantovaným BIV-ICD.12 Dle donedávna platných klinických doporučení pro implantaci ICD u pacientů se srdečním selháním a BPRT nebylo nikdy rozlišeno.13 To se změnilo v roce 2012 po publikaci nových klinických doporučení,14 ve kterých je nově posílena indikace pro implantaci BIV-ICD u pacientů s BPRT a oslabena indikace k implantaci BIV-ICD u pacientů s BPRT (Tabulka).

Tento článek si klade za cíl probrat důkazy týkající se morfologie a říðky komplexu QRS ve vztahu k indikací pro SRL vyplývající z publikovaných klinických studí, registru a fyziologických studí. Budou rovněž shrnuty elektromechanické studie, výsledky SRL u pacientů s BPRT a oslabena indikace k implantaci BIV-ICD u pacientů s BPRT (Tabulka).

V těchto klinických studích testujících SRL byl nízký podíl nemocných s BPRT, což omezovalo interpretaci výsledků u této podskupiny nemocných. Stejně tak i v naši nedávné analýze dat pacientů ze systému Medicare získaných z původního ICD registru vedeného Iowa Foundation for Medical Care (IFMC) v letech 2005 a 2006 mělo BPRT pouze 11% z téměř 15 000 nemocných s implantovaným BIV-ICD.12 Dle donedávna platných klinických doporučení pro implantaci ICD u pacientů se srdečním selháním a BPRT nebylo nikdy rozlišeno.13 To se změnilo v roce 2012 po publikaci nových klinických doporučení,14 ve kterých je nově posílena indikace pro implantaci BIV-ICD u pacientů s BPRT a oslabena indikace k implantaci BIV-ICD u pacientů s BPRT (Tabulka).

Tento článek si klade za cíl probrat důkazy týkající se morfologie a říðky komplexu QRS ve vztahu k indikací pro SRL vyplývající z publikovaných klinických studí, registru a fyziologických studí. Budou rovněž shrnuty elektromechanické studie, výsledky SRL u pacientů s BPRT a oslabena indikace k implantaci BIV-ICD u pacientů s BPRT (Tabulka).

Tento článek si klade za cíl probrat důkazy týkající se morfologie a říðky komplexu QRS ve vztahu k indikací pro SRL vyplývající z publikovaných klinických studí, registru a fyziologických studí. Budou rovněž shrnuty elektromechanické studie, výsledky SRL u pacientů s BPRT a oslabena indikace k implantaci BIV-ICD u pacientů s BPRT (Tabulka).

Tento článek si klade za cíl probrat důkazy týkající se morfologie a říðky komplexu QRS ve vztahu k indikací pro SRL vyplývající z publikovaných klinických studí, registru a fyziologických studí. Budou rovněž shrnuty elektromechanické studie, výsledky SRL u pacientů s BPRT a oslabena indikace k implantaci BIV-ICD u pacientů s BPRT (Tabulka).

Tento článek si klade za cíl probrat důkazy týkající se morfologie a říðky komplexu QRS ve vztahu k indikací pro SRL vyplývající z publikovaných klinických studí, registru a fyziologických studí. Budou rovněž shrnuty elektromechanické studie, výsledky SRL u pacientů s BPRT a oslabena indikace k implantaci BIV-ICD u pacientů s BPRT (Tabulka).

Elektrická aktivace u BPRT a BLRT

Atrioventrikulární (AV) převodový systém je tvořen AV uzlem, Histovým svazkem a Tawarovými raménky. Pravé Tawarovo raménko prochází podél pravé strany mezokomorového septa a končí Purkyňovými vláknami, které dosahují až k hrotu PK. Levé Tawarovo raménko prochází septum, dále se dělí na přední a zadní svazecek a třetí větev aktivující střední část septa LK a poté tepře přechází v Purkyňova vlákná. U normálního srdce je levá strana septa aktivována dříve než pravá strana septa. Septum je takto aktivováno od hrotu směrem k bazi a laterální stěnám a doba jeho aktivace se pohybuje mezi 50 až 80 ms.17

U pacientů se srdečním selháním s BPRT nebo BLRT je většina LK aktivována cestou intramyokardiaálního vedení vzhledem k tomu, že je porušen převod pomocí specializovaných volivých vláken. Elektrické vedení u srdečního selhání s BLRT bylo popsáno již dříve,18–20 Endokardiaální aktivace postupuje z anterolaterální stěny PK pomalu přes mezokomorové septum a poté dochází k aktivaci LK. Aktivační vlna dále postupuje kolem funkční přední linie bloku dále inferiorně směrem k hrotu LK a nakonec je aktivována bazální část posterolaterální stěny LK. Aktivační báz LK trvá přibližně 80 až 150 ms od začátku aktivace septa. Pacienti s dobou aktivace spíše v horní části tohoto rozměru mají typicky delší transseptální přední předně.

U BPRT je nejprve aktivováno mezokomorové septum a potom aktivace postupuje skrze septum směrem k PK. Výsledkem je pozdní automatická baze laterální stěny PK. Ačkoliv je tento průběh aktivace u pacientů s BPRT typický, nemusí být u pacientů s BPRT dle EKG a současným srdečním selháním tento typický průběh aktivace přítomen vždy. Tato pozorovatelná byla publikována již v roce 1940 Ungeren22 a Richmanem.21 Ti tento fenomén nazvali BLRT v přístroji za BPRT. Přetěžování EKG u těchto nemocných má v prekordiálních svedech obraz BPRT a v koncepčních svedech obraz BLRT. S použitím vektrokardiografie zjistili, že aktivace LK je v těchto případech odlišná od té běžně se vyskytující u BPRT nebo BLRT. Při korelací s patologickými nálezmi objevili

Tabulka. Indikace třídy I a IIa pro SRL publikované American Heart Association, American College of Cardiology Foundation a Heart Rhythm Society v roce 2012

| Třída I | SRL je indikována u pacientů s EFLK ≤ 35%, sinusovým rytmem, BLRT s říði QRS ≥ 150 ms, se symptomy odpovídajícími funkční třídě II, III nebo ambulantní IV dle NYHA klasifikace a adekvátní farmakologickou léčbou. |
| Třída IIa | SRL může být přínosná u pacientů s EFLK ≤ 35%, sinusovým rytmem, BLRT s říðí QRS 120-149 ms, se symptomy odpovídajícími funkční třídě II, III nebo ambulantní IV dle NYHA klasifikace a adekvátní farmakologickou léčbou. |

Přetíženo z publikace Tracy a spol.:14 se svolením nakladatele. Elsevier. SRL, srdeční resynchronizační léčba; BLRT, blokáda levého Tawarova raměnka; EFLK, ejekční frakce levé komory; NYHA, New York Heart Association.
infarkty a fibrózu ve mezikomorovém septu v místě průběhu obou Tawarových ramének i jinde. Unger a spol.\(^2\) došli k závěru, že toto „maskování“ je ve skutečnosti formou postižení obou Tawarových ramének.

V pozdější studii publikované Fantonim a spol.\(^2\)23 dosáhli k závěru, že toto „maskování“ je ve skutečnosti formou postižení obou Tawarových ramének.

V pozdější studii publikované Fantonim a spol.\(^2\)23 byli získány další informace o rozličných typech elektrické aktivační oblasti srdce u pacientů s BPRT, srdečním selháním a jizevnatou tkání. V této studii bylo provedeno elektrofyzioLOGICKÉ mapování u 100 pacientů se srdečním selháním, z nichž šest mělo BPRT. Pět z těchto šesti pacientů s BPRT mělo ischemickou kardiomyopatií. Pacienti s BPRT měli rovněž významně horší hemodynamický profil s vyšší třídou funkční klasifikace NYHA a nižší EFLK. Nejpozdnější aktivace byla nálezena na laterální volné stěně PK nebo ve výtokovém traktu PK a doba aktivace byla významně delší u BPRT ve srovnání s BLRT. Ve skupině pacientů s BPRT bylo zjištěno, že ve skupině pacientů s BPRT bylo zjištěno že vsadě k závěru, že toto „maskování“ je ve skutečnosti formou postižení obou Tawarových ramének.

Mechanika kontrakce u BPRT a BLRT

Mechanika kontrakce u BLRT

Nejdůležitějším faktorem při vyhledávání optimálních kandidátů pro SRL je regionální mechanická aktivace při blokádě Tawarova raménka a celková mechanická dyssynchronie LK.\(^2\)4,\(^2\)5 Mechanické důsledky BLRT jsou schematicky znázorněny v obrázku 2. Křivky mechanické aktivity svaloviny (elasance) jsou znázorneny pro oblasti LK s časnou a opožděnou stimulací.\(^2\)6 Pokud je jedna křivka výše než druhá, je tato oblast stěny relativně tužší, a může tudíž napínat protější stěnu. Odečtením jedné křivky od druhé získáme rozdílovou křivku, na které bude patrný nekoordinovaný pohyb stěny. Septální oblasti se často před začátkem ejekce kontrají o ≤ 10 %, nicméně následně se již smršťují minimálně, tudíž jsou napínány. Laterální stěna je napjata v časné systole až o 15 % a poté dochází k systolickému zkrácení.

V důsledku toho jsou hlavními faktory spojenými s mechanickou dyssynchronií přispívajícími ke snížení práce během systoly a symptomů srdečního selhání u BLRT natažení laterální stěny v časné systole namísto její kontrakce a snížení práce septa během systoly, spojené s jeho pozdně systolickým napětím namísto kontrakce. U pacienta s typickou dysynchronií při BLRT nacházíme tudíž současně regionální distenzi a kontrakci protilehlých stěn v kterémkolik okamžiku srdečního cyklu. Následkem toho mohou křivky regionální cirkumferenční deformace (circumferential strain) u dyssynchronního srdečního selhání připomínat sinusoidy, jak je patrné z obrázku 3, kde negativní cirkumferenční deformace představuje kontrakci a pozitivní cirkumferenční deformace reprezentuje napětí.27 Jelikož cílem resynchronizační léčby je implantovat stimulační elektrodu do oblastí volně stěny LK, která je aktivována pozdě a kde dochází k časné distenzi, aby byly mechanicky stimulovány pozdě aktivované segmenty a stahovaly se včas společně s časné aktivovaným septem, ovlivňuje stupně protichůdné regionální distenze a kontrakce pravděpodobnost pozitivní odpovědi na SRL.28

Kvantitativní hodnocení mechaniky kontrakce u BLRT před a po resynchronizaci
Na základě těchto znalostí byl vytvořen index CURE (circumferential uniformity ratio estimate), který má charakterizovat rozsah současného napětí a kontrakce vznikajících v LK v důsledku mechanické dyssynchronie. Vzhledem k tomu, že index CURE je založen na Fourierově analýze regionální deformace, není nutné měřit regionální časy do vrcholu deformace (time to peak strain). Fourierova transformace je založena na principu, že komplexní funkce může být popsána řadou jednodušších harmonických funkcí s frekvencemi, které stoupají s pořadím Fourierova koeficientu. Index CURE využívá pouze relativní příspěvky funkce nultého a prvního Fourierova koeficientu k celkové funkci cirkumferenční deformace vynesené proti segmentu LK. Tímto způsobem je Fourierova funkce pro cirkumferenční deformaci s koeficientem 0 vynesená proti segmentu LK asociovaná s synchronním, protože odpovídá přímce a ukazuje, že deformace je ve všech segmentech shodná (obrázek 4, horní graf). Naopak funkce pro cirkumferenční deformaci s koeficientem 1 vynesená vůči segmentu LK je asociovaná s dyssynchronní, protože koresponduje s harmonickou funkcí o nízké frekvenci, která je v některých segmentech pozitivní, což představuje distenzi stěny, a v některých segmentech negativní, což představuje kontrakci stěny (obrázek 4, dolní graf).

Index CURE používá mocninu funkce s koeficientem 0 a 1 z této Fourierovy analýzy k vytvoření indexu dyssynchro-
nie jako poměr mocnin funkce s koeficientem 0 a součtu mocnin funkce s koeficientem 0 a 1. Protože mocnina funkce s koeficientem 1 narůstá v případě těžké dyssynchronie, čítatel bude mnohem nižší než jmenovatel a index CURE se bude blížit 0. V případě synchronie LK bude mocnina funkce s koeficientem 1 nižší, čítatel bude podobný jmenovateli a index CURE se bude blížit 1. Index CURE tedy představuje číslo mezi 0 a 1, které odráží rozsah neefektivní kontrakce LK. Bylo prokázáno, že index CURE zjištěný pomocí magnetické rezonance srdece je schopen dobře predikovat odpověď na SRL.27,28 Index CURE rovněž lépe odlišil pacienty se srdečním selháním a BLRT ve srovnání s indexem založeným na měření časů do vrcholu deformace.29

Helm a spol.30 hodnotili na zvířecím modelu srdečního selhání a BLRT hemodynamický účinek a celkovou synchronii kontrakce při použití resynchronizační stimulace z různých míst LK. Srdční selhání bylo navozeno rychlou stimulaci komor a BLRT byla vytvořena pomocí radiofrekvenční ablace. Pro každou polohu levokomorové elektrody byla hodnocena celková srdeční funkce pomocí okamžitýho katetru zaznamenávajícího objem (vodičovost) a tlak v LK a synchronie kontrakce pomocí magnetické rezonance srdecí a výpočtu indexu dyssynchronie CURE. Optimální zlepšení funkce LK bylo dosaženo při stimulaci z míst na laterální stěnu LK, jak ukazuje obrázek 5. Na obrázku jsou znázorněna potenciální stimulační místa na volné stěně LK, ve kterých byla celková funkce a synchronie ≥ 70% z maximální celkové funkce a synchronie (podle indexu CURE). Je nápadné, že tyto oblasti jsou téměř identické, jak je vidět na posledním vyobrazení, kde je znázorněna oblast překrývání. Je možno shrnout, že překrývání stimulačních míst, která generují maximální zlepšení synchronie podle indexu CURE a globální funkce LK ukazuje, že index CURE je vhodný parametr pro hodnocení optimálního účinku stimulace při resynchronizační léčbě.

Kvantitativní hodnocení mechaniky kontrakce u BPRT před a po resynchronizaci

Stejný psí model použili Byrne a spol.31, aby demonstrováli rozsah dyssynchronie, která vzniká při BPRT ve srovnání s BLRT. U psů bylo srdeční selhání navozeno rychlou stimulaci komor a u poloviny psů byla provedena radiofrekvenční ablace pravého Tawarova raménka a u druhé poloviny ablace levého Tawarova raménka. Všem psům byl implantován BIV systém se stimulační elektrodou v pravé síní, PK a LK a byl hodnocen účinek pravokomorové, biventrikulární a levokomorové stimulace u srdečního selhání s BPRT ve srovnání se srdečním selháním s BLRT. Svíce komplex QRS u BPRT i BLRT byla při vstupu přibližně dvakrát delší než u normálních zvířat. Průměrná EFLK byla 32,6% u BPRT a 25,1% u BLRT, zatímco EFPK byla 15,5% u BPRT a 25,1% u BLRT. Jak ukazuje obrázek 6, byl index CURE významně nižší u BLRT (0,58 ± 0,09) než u BPRT (0,80 ± 0,03; p < 0,05), což naznačuje, že dyssynchronie byla u srdečního selhání s BPRT mnohem menší než u srdečního selhání s BLRT. Jak pravokomorová stimulace tak BIV stimulace zkracovaly obdobně šíři komplexu QRS u srdečního selhání s BPRT
o průměrně 28% a 34%, zatímco samotná levokomorová stimulace neměla na šíři komplexu QRS žádný vliv. Jak ukazuje obrázek 7, došlo u srdečního selhání s BPRT ke zlepšení dP/dtₘₙₙₙₘₓ LK při pravokomorové a BIV stimulaci, ale významně zlepšení parametru CURE proti vstupní hodnotě bylo u srdečního selhání s BPRT dosaženo pouze při pravokomorové stimulaci. BIV stimulace také u srdečního selhání s BPRT prodlužovala izovolumickou relaxaci LK. Navíc zlepšení dP/dtₘₙₙₙₙₓ bylo při BIV stimulaci mnohem menší u srdečního selhání s BPRT, než u srdečního selhání s BLRT. Samotná levokomorová stimulace byla u srdečního selhání s BPRT dokonce škodlivá, protože zhoršovala celkovou funkci LK a také dyssynchronní hodnocenou pomocí CURE. Synchronní kontrakce byla dosažena pouze při pravokomorové stimulaci a samotná levokomorová stimulace vedla k výraznému zhoršení mechaniky LK, což společně naznačuje, že převážná část benefitu BIV stimulace ve výše uvedené studii byla daná spíše pravokomorovou než levokomorovou složkou stimulace. Je také zajímavé, že EFPK se dramaticky zlepšila jak při pravokomorové, tak BIV stimulaci. BIV stimulace také u srdečního selhání s BPRT dosaženo pouze při pravokomorové stimulaci při přežití, což je rovněž kohort a registru.

Výsledky z klinických studií, kohort a registrů

Výsledky u BPRT získané z klinických studií

Jednou z největších analýz klinických studií zabývajících se SRL a BPRT byla souhrnná analýza 61 pacientů zařazených do studie MIRACLE (Multicenter InSync Randomized Clinical Evaluation) a studie CONTAK-CD, z nichž 34 pacientů bylo randomizováno k SRL a 27 pacientů bylo v kontrolní skupině.33 Těchto 61 pacientů představovalo 6% z celkem 1 034 pacientů zařazených do těchto dvou studií. Cílovými ukazátky byly srdeční PVR, zlepšení struktury a funkce LK, nepřítomnost blokád levého Tawarova raménka, jak bylo uvedeno na obrázku A.

Elektromechanické mechanismy u BPRT

Několik fyziologických faktorů může pomoci vysvětlit, proč vedla stimulace volné stěny LK v těchto studiích k většímu hemodynamickému zlepšení u srdečního selhání s BLRT. Zaprůježí srdečního selhání u BPRT je spojeno s významně nížší dyssynchronií než srdeční selhání s BLRT. Zadruhé, v případě srdečního selhání s BIV stimulaci, zlepšení mechaniky LK, což je dáno především zlepšením endstystalického objemu LK, což je rovněž důležité pro srdeční selhání s BPRT. Zatímco pravokomorová stimulace byla daná především zlepšením struktury a funkce LK, což je dáno především zlepšením struktury a funkce LK.

Je také třeba komentovat rozdílné nálezy zpoždění električního zániku u srdečního selhání s BPRT při levokomorové stimulaci. BIV stimulace také u srdečního selhání s BPRT dosaženo pouze při pravokomorové stimulaci, tak BIV stimulace zlepšily celkovou funkci LK u srdečního selhání s BLRT, levokomorová stimulace zároveň prodlužila dobu elektrické aktivace LK, zatímco BIV stimulace ji zkrátila.

zateli byly EFLK, třída NYHA klasifikace, šestiminutový test chůze, Minnesotský dotazník kvality života u srdečního selhání a vrcholová spotřeba kyslíku (peak V0). Jiným parametrem, který se u BPRT po SRL při šestiměsíčním sledování zlepšil, byla třída NYHA (z 3,1 na 2,3), zatímco další objektivnější ukazatele se po 6 měsících nezlepšily. Zejména u BPRT po SRL nedošlo k žádné významné změně EFLK nebo vrcholové spotřeby kyslíku. Peak V0, byla u pacientů s BPRT randomizovaných k SRL při vstupu 12,7 ± 4,1 ml/kg/min a 12,4 ± 2,8 ml/kg/min po 6 měsících (p = 0,85); u pacientů s BPRT randomizovaných do kontrolní skupiny byla peak V0, při vstupu 13,0 ± 3,6 ml/kg/min a 13,6 ± 4,0 ml/kg/min po 6 měsících. Výsledky podskupiny s BLRT nebyly sice pro srovnání v této analýze publikovány, ale změna peak V0, po 6 měsících byla vcelé skupině značně menší.

Výsledky u BPRT získané z klinických kohort a registrů

Co se týče menších klinických kohort a registrů, publikovali Rickard a spol.37 výsledky 542 pacientů léčených v jednom centru implantací nového BIV přístroje analýzované v závislosti na morfologii komplexu QRS. Ze těchto pacientů mělo 7,0 % BPRT.38 Ischemickou kardiomyopatií mělo 76,3 % pacientů s BPRT a pouze 49,5 % pacientů s BLRT (p < 0,0001), což odpovídá i nedávnému zjišťení, že pacienti se srdečním selháním a BPRT mají ve srovnání s BLRT častěji zijevnatou tkáň v myokardu, a to zejména v anteroseptální oblasti.38 Ve skupině pacientů publikované Rickardem a spol. došlo u pacientů s BLRT ke zlepšení EFLK z 21,9 ± 7,6 % na 32,0 ± 13,1 %, ale ve skupině s BPRT byla EFLK po implantaci BIV přístroje obdobná jako před léčbou (23,9 ± 6,8 % versus 25,8 ± 10,0 %). Změna funkční třídy NYHA klasifikace byla rovněž mnohem větší ve skupině s BLRT. Ačkoliv byly zjiš-

těny významně rozdíly v mortalitě během sledování při rovnovážném porovnání podskupin s BLRT, BPRT a nespecifickou poruchou nitrokomorového vedení (16,2 % u BLRT, 26,3 % u BPRT a 29,7 % u nespecifické poruchy nitrokomorového vedení, \(p = 0,04 \) v log-rank testu; průměrná doba sledování 3,4 roku), nebyl BPRT asociovaný se statisticky významným nárůstem mortality ani při použití univariantní Coxovy regresní analýzy (HR, 1,46; 95% CI, 0,7–3,06; \(p = 0,71 \)), ani při použití multivariantní Coxovy regresní analýzy (HR, 1,26–1,65) po adjustaci na další proměnné BLRT (HR, 1,1; 95% CI, 0,61–2,13; \(p = 0,84 \)).

Navic v malé podskupině 12 nemocných s BPRT se současným postižením levého Tawarova raménka došlo u 9 z 12 nemocných ke zlepšení synchronie kontrakce podle tkáňového Doppleru, nicméně celková EFLK u všech pacientů se při 12měsíčním sledování ve srovnání s vstupní hodnotou neuzměnila (24 ± 6 % versus 26 ± 8 %; \(p = NS \)).

Přítomnost blokády raménka a nižší významné rozhodnutí podskupin s BLRT, BPRT a nespecifickou poruchou nebyla významná, ale zase o něco více než 14% vzestup levokomorového dP/dt max, tak srdečního indexu LK. Jak ukazuje obrázek 9, narostlo dP/dt max právě komory u pacientů s BPRT a pravokomorovou stimulaci o 22 %. To bylo sice o něco méně než 43% vzestup dP/dt max levé komory při stimulaci volné stěny LK u 10 pacientů se srdečním selháním a BLRT, jak dříve popsal Nelson a spol., ale zase o něco více než 14% vzestup levokomorového dP/dt max při stimulaci volné stěny LK ve studii PATH-CHF-II (Pacing Therapies for Congestive Heart Failure II).

Jako ukazuje obrázek 9, došlo při pravokomorové stimulaci i u šesti ze sedmi pacientů se srdečním selháním a BPRT a dysfunkci PK, z nichž většina měla vrozenou srdeční vadu. Globální funkce LK byla při vstupu v normě; průměrný srdeční index byl 2,85 ± 1,19 l/min/m². Sekvenční stimulace PST a PK byla lepší ve srovnání s BIV stimulací. Pravokomorová stimulace byla také hodnocena prospektivně v jiné studii zahrnující 7 pacientů s BPRT a dysfunkci PK, z nichž většina měla vrozenou srdeční vadu. Bylo sice o něco méně než 43% vzestup dP/dt max levé komory při stimulaci volné stěny LK u 10 pacientů se srdečním selháním a BLRT, jak dříve popsal Nelson a spol., ale zase o něco více než 14% vzestup levokomorového dP/dt max při stimulaci volné stěny LK ve studii PATH-CHF-II (Pacing Therapies for Congestive Heart Failure II).

Jak ukazuje obrázek 9, došlo při pravokomorové stimulaci i u šesti ze sedmi pacientů se srdečním selháním a BPRT a dysfunkci PK, z nichž většina měla vrozenou srdeční vadu. Globální funkce LK byla při vstupu v normě; průměrný srdeční index byl 2,85 ± 1,19 l/min/m². Sekvenční stimulace PST a PK byla lepší ve srovnání s BIV stimulací. Pravokomorová stimulace byla také hodnocena prospektivně v jiné studii zahrnující 7 pacientů s BPRT a dysfunkci PK, z nichž většina měla vrozenou srdeční vadu. Bylo sice o něco méně než 43% vzestup dP/dt max levé komory při stimulaci volné stěny LK u 10 pacientů se srdečním selháním a BLRT, jak dříve popsal Nelson a spol., ale zase o něco více než 14% vzestup levokomorového dP/dt max při stimulaci volné stěny LK ve studii PATH-CHF-II (Pacing Therapies for Congestive Heart Failure II).

Jak ukazuje obrázek 9, došlo při pravokomorové stimulaci i u šesti ze sedmi pacientů se srdečním selháním a BPRT a dysfunkci PK, z nichž většina měla vrozenou srdeční vadu. Globální funkce LK byla při vstupu v normě; průměrný srdeční index byl 2,85 ± 1,19 l/min/m². Sekvenční stimulace PST a PK byla lepší ve srovnání s BIV stimulací. Pravokomorová stimulace byla také hodnocena prospektivně v jiné studii zahrnující 7 pacientů s BPRT a dysfunkci PK, z nichž většina měla vrozenou srdeční vadu. Bylo sice o něco méně než 43% vzestup dP/dt max levé komory při stimulaci volné stěny LK u 10 pacientů se srdečním selháním a BLRT, jak dříve popsal Nelson a spol., ale zase o něco více než 14% vzestup levokomorového dP/dt max při stimulaci volné stěny LK ve studii PATH-CHF-II (Pacing Therapies for Congestive Heart Failure II).

Resynchronizace pravé komory u BPRT

Studie Byrneho a spol.\(^{31}\) naznačila, že sekvenční stimulace PST a PK je u srdečního selhání s BPRT jednoznačně lépe než levokomorová stimulace a má rovněž u těchto pacientů určité lépší výhody ve srovnání s BIV stimulací. Pravokomorová stimulace byla také hodnocena prospektivně v jiné studii zahrnující 7 pacientů s BPRT a dysfunkci PK, z nichž většina měla vrozenou srdeční vadu.\(^{41}\) Globální funkce LK byla při vstupu v normě; průměrný srdeční index byl 2,85 ± 1,19 l/min/m². Sekvenční stimulace PST a PK byla lepší ve srovnání s BIV stimulací. Pravokomorová stimulace byla také hodnocena prospektivně v jiné studii zahrnující 7 pacientů s BPRT a dysfunkci PK, z nichž většina měla vrozenou srdeční vadu. Bylo sice o něco méně než 43% vzestup dP/dt max levé komory při stimulaci volné stěny LK u 10 pacientů se srdečním selháním a BLRT, jak dříve popsal Nelson a spol., ale zase o něco více než 14% vzestup levokomorového dP/dt max při stimulaci volné stěny LK ve studii PATH-CHF-II (Pacing Therapies for Congestive Heart Failure II).\(^{41}\)

Jak ukazuje obrázek 9, došlo při pravokomorové stimulaci i u šesti ze sedmi pacientů se srdečním selháním a BPRT a dysfunkci PK, z nichž většina měla vrozenou srdeční vadu. Globální funkce LK byla při vstupu v normě; průměrný srdeční index byl 2,85 ± 1,19 l/min/m². Sekvenční stimulace PST a PK byla lepší ve srovnání s BIV stimulací. Pravokomorová stimulace byla také hodnocena prospektivně v jiné studii zahrnující 7 pacientů s BPRT a dysfunkci PK, z nichž většina měla vrozenou srdeční vadu. Bylo sice o něco méně než 43% vzestup dP/dt max levé komory při stimulaci volné stěny LK u 10 pacientů se srdečním selháním a BLRT, jak dříve popsal Nelson a spol., ale zase o něco více než 14% vzestup levokomorového dP/dt max při stimulaci volné stěny LK ve studii PATH-CHF-II (Pacing Therapies for Congestive Heart Failure II).\(^{41}\)

Závěry

Klinická data týkající se SRL u srdečního selhání s BPRT máme z analýz podskupin klinických studií a z výsledků.
observačních studií a registrů. Tato data nám umožňují spíše jen vytvářet domněnky než definitivní závěry týkající se účinnosti SRL u pacientů se srdečním selháním a BPRT. Dokud nebude provedena adekvátně silná randomizovaná klinická studie se SRL u pacientů se srdečním selháním a BPRT, nemáme dostatek důkazů podporujících tvrzení, že SRL nemá u těchto pacientů žádný význam. I tak stojí za pozornost fakt, že dostupná klinická data neprokázala u pacientů s BPRT konsistentné zlepšení objektivních ukazatelů jako je EFLK nebo peak VO₂ po SRL. Navíc data z velkého registru demonstrovala zhoršení přežití u těchto pacientů po SRL, ve srovnání se srdečním selháním a BLRT. Poznámky se zobrazování jízvě a tkánu při magnetické rezonanci srdečního systému, v rámci kardiológického přístupu, mohou být vytvářet domněnky o skutečnosti týkající se účinnosti BPRT. Poznatky ze zobrazování jizvě tkání při magnetické rezonanci srdce a ze zvířecích modelů nabízejí další vysvětlení, proč mohou mít pacienti s BPRT horší výsledky při této léčbě. Závěrem je možné říci, že další klinické studie týkající se úlohy SRL u pacientů se srdečním selháním a BPRT by mohly vytvořit vhodná klinická doporučení pro potenciální kandidáty této léčby mající BPRT a přinosem by mohlo být i vytváření nových záznamů moderními zobrazovacími metodami.

Zdroje finančního závěsu

Střet zájmů

Závěr

Literatura

3. Halldenman GA, Croft JB, Gibbs WH, Rashidee A. Hospitalization of pa-

12. Bilchick KC, Kamath S, DiMarco JP, Stukenborg GJ. Bundle-branch block morphology and other predictors of outcome after cardiac resynchroni-
Circulation – české vydání říjen, 2014

Pokaždé nevyhovující části textu čtenáři mohou většinou přečíst online na http://circ.epubmed.org

Klíčová slova: blokáda Tawarova raménka – srdeční resynchronizační léčba – srdeční selhání

Odpověď Kennethu C. Bilchickovi, MD, MS

Angelo Auricchio, MD, PhD, Joost Lumen, PhD, Frits W. Prinzen, PhD

Bez adekvátně silně randomizované klinické studie týkající se srdeční resynchronizační léčby (SRL) u pacientů s blokádou pravého Tawarova raménka (BPRT) je problém dlouhodobého stálého fungování elektrického a mechanického kontrakce komor. Bez adekvátně silné randomizované klinické studie týkající se srdeční resynchronizační léčby (SRL) u pacientů s blokádou pravého Tawarova raménka (BPRT) nemáme dostatek důkazů podporujících závěr, že SRL nemá žádný význam u těchto nemocných. S cílem vyplnit tuto podstatnou mezeru v našich znalostech byla nedávno provedena meta-analyza dat individuálních pacientů z pěti randomizovaných studií hodnocících účinek SRL na morbiditu a mortalitu u pacientů s symptomatickým srdečním selháním. Její výsledky naznačují, že u pacientů s BPRT můžeme očekávat podobný účinek léčby dat individuálních pacientů z pěti randomizovaných studií hodnocících účinek SRL na morbiditu a mortalitu u pacientů s symptomatickým srdečním selháním. Její výsledky naznačují, že u pacientů s BPRT můžeme očekávat podobný účinek léčby.

Pokud jde o problémy s pravé komorou, která se nevylízá ani pravokomorovou stimulací, je třeba sledovat pacienty v intervalech po implantaci a sledování, doby výkonu a nákladů spojených s implantací biventrikulárního defibrilátoru v porovnání se standardním kardioverterem-defibrilátorom. Co se týče otázky úlohy SRL u pacientů s BPRT, myslíme si, že indikace pro SRL by měla být hodnocena na základě modelu mechaniky srdece podporého také počítačovou simulací. Ve světle významné komplexnosti a nárůstové tendence implantace a sledování, doby výkonu a nákladů spojených s implantací biventrikulárního defibrilátoru je třeba sledovat pacienty v intervalech po implantaci a sledování, doby výkonu a nákladů spojených s implantací biventrikulárního defibrilátoru v porovnání se standardním kardioverterem-defibrilátorom. Co se týče otázky úlohy SRL u pacientů s BPRT, myslíme si, že indikace pro SRL by měla být hodnocena na základě modelu mechaniky srdece podporého také počítačovou simulací. Ve světle významné komplexnosti a nárůstové tendence implantace a sledování, doby výkonu a nákladů spojených s implantací biventrikulárního defibrilátoru je třeba sledovat pacienty v intervalech po implantaci a sledování, doby výkonu a nákladů spojených s implantací biventrikulárního defibrilátoru v porovnání se standardním kardioverterem-defibrilátorom. Co se týče otázky úlohy SRL u pacientů s BPRT, myslíme si, že indikace pro SRL by měla být hodnocena na základě modelu mechaniky srdece podporého také počítačovou simulací. Ve světle významné komplexnosti a nárůstové tendence implantace a sledování, doby výkonu a nákladů spojených s implantací biventrikulárního defibrilátoru je třeba sledovat pacienty v intervalech po implantaci a sledování, doby výkonu a nákladů spojených s implantací biventrikulárního defibrilátoru v porovnání se standardním kardioverterem-defibrilátorom. Co se týče otázky úlohy SRL u pacientů s BPRT, myslíme si, že indikace pro SRL by měla být hodnocena na základě modelu mechaniky srdece podporého také počítačovou simulací.