The increased spatial heterogeneity and dispersion of ventricular repolarization caused by activation of the cardiac sympathetic nervous system may lead to ventricular arrhythmias and sudden cardiac death.1–3 Selective modulation of cardiac sympathetic nerves has been proposed as an alternative option for patients with recurrent ventricular arrhythmias, despite optimal medical therapy and catheter ablation.4–6 The time interval from the peak to the end of the electrocardiographic T wave (Tp-e) is an independent predictor of sudden cardiac death in experimental models of long QT and in patients with long QT syndrome,7,8 Brugada syndrome,9 hypertrophic cardiomyopathy,10 and structural heart disease.11–13 Tp-e is also thought to represent a marker of transmural dispersion of repolarization (TDR).7,14,15 However, it has also been reported that Tp-e reflects not only TDR, but also whole heart dispersion of repolarization (DOR).16,17 Sympathetic nerve stimulation increases dispersion in activation recovery interval (ARI).18,19 A surrogate marker of local action potential duration.20 Little is known about the effects of circulating catecholamines compared with sympathetic nerve activation on Tp-e and DOR. In addition, regional endocardial effects in vivo are not well understood given that previous studies had focused primarily on epicardial recordings.

The purpose of this study was to (1) evaluate effects of sympathetic activation by direct nerve stimulation versus increased circulating norepinephrine on Tp-e and epicardial and endocardial ARI and DOR and (2) identify any differences in functional distribution of sympathetic innervation of the LV epicardium versus endocardium.

Methods

Surgical Preparation

Animal handling and care was approved by the University of California Institutional Animal Care and Use Committee and

The increased spatial heterogeneity and dispersion of ventricular repolarization caused by activation of the cardiac sympathetic nervous system may lead to ventricular arrhythmias and sudden cardiac death.1–3 Selective modulation of cardiac sympathetic nerves has been proposed as an alternative option for patients with recurrent ventricular arrhythmias, despite optimal medical therapy and catheter ablation.4–6 The time interval from the peak to the end of the electrocardiographic T wave (Tp-e) is an independent predictor of sudden cardiac death in experimental models of long QT and in patients with long QT syndrome,7,8 Brugada syndrome,9 hypertrophic cardiomyopathy,10 and structural heart disease.11–13 Tp-e is also thought to represent a marker of transmural dispersion of repolarization (TDR).7,14,15 However, it has also been reported that Tp-e reflects not only TDR, but also whole heart dispersion of repolarization (DOR).16,17 Sympathetic nerve stimulation increases dispersion in activation recovery interval (ARI).18,19 A surrogate marker of local action potential duration.20 Little is known about the effects of circulating catecholamines compared with sympathetic nerve activation on Tp-e and DOR. In addition, regional endocardial effects in vivo are not well understood given that previous studies had focused primarily on epicardial recordings.

The purpose of this study was to (1) evaluate effects of sympathetic activation by direct nerve stimulation versus increased circulating norepinephrine on Tp-e and DOR and (2) identify any differences in functional distribution of sympathetic innervation of the LV epicardium versus endocardium.

Methods
WHAT IS KNOWN
• Sympathetic activation increases the risk of ventricular tachy-arrhythmias and sudden cardiac death.
• T-peak to T-end interval is an independent marker of sudden cardiac death.
• Sympathetic nerve stimulation increases dispersion of repolarization.
• Stimulation of the left stellate ganglion causes greater shortening of action potential duration of the epicardial posterior/dorsal and apical ventricular walls, whereas stimulation of the right stellate ganglion causes greater shortening of action potential duration of the epicardial anterior/ventral and basal walls.

WHAT THE STUDY ADDS
• T-peak to T-end interval was increased by sympathetic nerve stimulation, but not by the circulating catecholamine, norepinephrine.
• The increase in T-peak to T-end interval correlates significantly with the increase in ventricular dispersion of repolarization caused by sympathetic nerve stimulation, but not norepinephrine.
• Endocardial left ventricular regional patterns of functional innervation by the left and right stellate ganglia follow that of the epicardium.

Norepinephrine was infused continuously for 2 minutes at 0.3 μg/kg. After SG stimulation and a minimum of a 20 minutes wait period, each SG. Left stellate ganglion stimulation (LSS), right stellate ganglion stimulation (RSG) was performed in accordance with National Institutes of Health’s Guide for the Care and Use of Laboratory Animals.

Female Yorkshire pigs (n=13, 44.9±3.9 kg) were sedated (telazol [8–10 mg/kg] and fentanyl [2–4 μg/kg]), intubated, and mechanically ventilated. General anesthesia was maintained with inhaled isoflurane (0.8%–1.5%) and intermitently timed boluses of fentanyl. Femoral arterial access and venous access along with left carotid arteriotomy and jugular venotomy were performed. A median sternotomy was performed to expose the heart and bilateral cervicothoracic stellate ganglia (SG). Customized bipolar needle electrodes were placed through the right and left SG for stimulation. Then, anesthesia with inhaled isoflurane was switched to continuous intravenous infusion of α-chloralose (10 mg/kg/h). Hemodynamic parameters were continuously monitored, and arterial blood gas levels were checked at regular interval. After surgical preparation, animals were stabilized for 1 hour before initiation of experimental protocol. Animals were euthanized by intravenous administration of a lethal dose of potassium chloride and sodium pentobarbital (100 mg/kg).

Stellate Ganglia Stimulation
The left, right, and bilateral SG were electrically stimulated (4 ms pulses, 4 Hz) by a Grass stimulator (Model 588; Grass Technologies, West Warwick, RI) for 30 seconds. The threshold current, set at a 10% increase in systolic blood pressure, was measured for each SG. The stimulation current was programmed at twice the threshold for each SG. Left stellate ganglion stimulation (LSS), right stellate ganglion stimulation (RSG), and bilateral SG stimulation (BSS) were performed in all animals with a 20-minute interval between stimulations.

Norepinephrine Infusion
After SG stimulation and a minimum of a 20 minutes wait period, norepinephrine was infused continuously for 2 minutes at 0.3 μg/kg/
the entire epicardium and LV endocardium (whole heart). Transmural differences in ARI of the LV were calculated as mean LV epicardial ARI minus mean LV endocardial ARI (transmural difference in ARI = ARI_{epicardium} - ARI_{endocardium}). The change in DOR and Tp-e was also analyzed to account for baseline differences.

Statistical Analysis

All values are expressed as mean±SEM. For paired comparison of baseline and intervention, the Wilcoxon signed-rank test was used given the non-Gaussian distribution of the data. Regional comparisons during LSS, RSS, BSS, and norepinephrine infusion were performed using linear mixed effects regression models with heterogeneous variances across regions. For comparison of the correlation between Tp-e and DOR, Pearson product-moment correlation coefficient was used. The Benjamini–Hochberg procedure was used to evaluate significance at 5% false discovery rate for each experiment. A P value <0.05 was considered statistically significant. All P values <0.05 remained significant after controlling the false discovery rate at 5%. Analyses were performed with SAS version 9.3 (SAS Institute Inc., Cary, NC).

Results

A total of 13 animals successfully underwent the study protocol. Current of stimulation was 6.5±0.86 mA for LSS and 4.9±0.6 mA for RSS.

Effects of Sympathetic Activation on Hemodynamic Parameters

There was no significant increase in HR during LSS (71.7±2.3 beats per minute versus 73.8±3.0 beats per minute; \(P=0.65\)), whereas RSS and BSS significantly increased HR (from 72.5±2.3 beats per minute to 99.0±5.3 beats per minute, \(P<0.01\); and from 74.0±2.7 beats per minute to 91.0±4.7 beats per minute, \(P<0.01\), respectively). HR was also significantly increased during norepinephrine infusion at 2 minutes (from 74.4±2.9 beats per minute to 87.2±4.4 beats per minute, \(P<0.01\)), with no significant increase at 1 minute (82.3±5.0 beats per minute, \(P=0.06\)).
Systolic blood pressure was significantly increased during LSS (from 124.5±5.1 mm Hg to 140.2±5.5 mm Hg, P<0.01), RSS (from 123.0±5.7 mm Hg to 142.9±5.6 mm Hg, P<0.01), and BSS (from 123.5±6.0 mm Hg to 154.3±6.4 mm Hg, P<0.01). Systolic blood pressure was also increased by nor-epinephrine infusion at 1 minute (from 121.5±6.6 mm Hg to 144.1±6.9 mm Hg, P<0.01) and 2 minutes (to 157.5±5.9 mm Hg, P<0.01).

Effects of Sympathetic Activation on Global ARIs and Tp-e
Effects of SG stimulation and norepinephrine infusion on whole heart ARI are shown in Figure 2. Whole heart ARI was significantly shortened during LSS (from 385.6±13.8 ms to 354.3±12.5 ms, P<0.01), RSS (from 384.9±14.2 ms to 305.1±15.9 ms, P<0.01), and BSS (from 375.6±15.6 ms to 289.8±13.4 ms, P<0.01). AT was unchanged during LSS (25.3±0.9 ms versus 23.6±1.4 ms, P=0.09), RSS (25.1±1.3 ms versus 25.6±1.1 ms, P=0.35), or BSS (25.1±1.0 ms versus 25.6±1.7 ms, P=0.76). Therefore, as with ARI, RT was decreased during LSS (from 411.0±14.1 ms to 377.9±13.1 ms, P<0.01), RSS (from 409.9±14.7 ms to 330.6±15.9 ms, P<0.01), and BSS (from 400.7±16.1 ms to 315.5±13.2 ms, P<0.01). Whole heart DOR was significantly increased during LSS (from 460.8±39.6 ms² to 1761.0±470.5 ms², P<0.01), RSS (from 468.4±33.8 ms² to 1633.6±573.9 ms², P=0.013), and BSS (from 417.2±29.3 ms² to 1468.6±410.2 ms², P<0.01; Figure 2E). Tp-e was significantly prolonged during LSS (from
40.4±2.2 ms to 92.4±12.4 ms, P<0.01), RSS (from 47.7±2.6 ms to 80.7±11.5 ms, P<0.01), and BSS (from 47.5±2.8 ms to 78.1±9.8 ms, P<0.01; Figure 2F).

Whole heart ARI also shortened with norepinephrine infusion (from 372.2±17.4 ms to 335.4±19.5 ms at 1 minute, P<0.01, and to 300.5±17.4 ms at 2 minutes, P<0.01), whereas AT remained unchanged (24.8±1.3 ms versus 25.7±1.3 ms at 1 minute, P=0.29, versus 23.4±1.1 ms at 2 minutes, P=0.06). Therefore, RT was also significantly decreased with norepinephrine infusion (from 396.9±17.9 ms to 361.1±20.0 ms at 1 minute, P<0.01, to 323.9±16.5 ms at 2 minutes, P<0.01). There was no significant increase in DOR (Figure 2E). Furthermore, Tp-e was also not significantly increased during norepinephrine infusion (Figure 2F).

Effects of Stellate Ganglion Stimulation on LV Endocardial and Epicardial ARI

ARI significantly shortened on the LV endocardium and LV epicardium during LSS (from 388.6±15.9 ms to 355.7±14.0 ms on the endocardium, P<0.01, and from 392.4±11.8 ms to 353.8±12.8 ms on the epicardium, P<0.01), RSS (from 388.2±16.4 ms to 304.9±17.0 ms on the endocardium, P<0.01, and from 392.9±12.6 ms to 314.6±15.6 ms on the epicardium, P<0.01), and BSS (from 378.1±17.4 ms to 289.9±15.3 ms on the endocardium, P<0.01, and

Figure 3. Effects of LSS (A), RSS (B), BSS (C), and NE infusion (D) on activation time (AT), repolarization time (RT), and dispersion of repolarization (DOR) of left ventricular (LV) epicardium and endocardium. *P<0.01 for baseline vs stellate ganglion stimulation or NE administration. ARI indicates activation recovery interval; BL, baseline; BSS, bilateral stellate stimulation; Epi, epicardium; Endo, endocardium; LSS, left stellate stimulation; NE, norepinephrine infusion; and RSS, right stellate stimulation. P values obtained using the Wilcoxon signed-rank test.
from 383.0±14.1 ms to 292.7±12.5 ms on the epicardium, \(P<0.01\). ARI dispersion increased on the LV endocardium and epicardium during LSS (216.6±65.7 ms\(^2\) versus 1756.9±459.3 ms\(^2\) on the endocardium, \(P<0.01\), and 431.8±75.5 ms\(^2\) versus 1880.8±624.5 ms\(^2\) on the epicardium, \(P<0.01\)), RSS (205.0±41.6 ms\(^2\) versus 1756.9±459.3 ms\(^2\) on the endocardium, \(P<0.01\), and 431.8±75.5 ms\(^2\) versus 1880.8±624.5 ms\(^2\) on the epicardium, \(P<0.01\)), and BSS (205.0±41.6 ms\(^2\) versus 1756.9±459.3 ms\(^2\) on the endocardium, \(P<0.01\), and 431.8±75.5 ms\(^2\) versus 1880.8±624.5 ms\(^2\) on the epicardium, \(P<0.01\)).

AT was unchanged on the LV endocardium or epicardium during LSS (24.6±1.7 ms versus 22.7±1.8 ms on the endocardium, \(P=0.08\), and 26.2±0.9 versus 24.0±1.3 ms on the epicardium, \(P=0.08\)), RSS (23.3±1.8 ms versus 23.0±1.8 ms on the endocardium, \(P=0.69\), and 26.1±0.9 versus 27.8±1.2 ms on the epicardium, \(P=0.06\)), or BSS (22.4±1.5 ms versus 22.5±1.4 ms on the endocardium, \(P=0.95\), and 27.1±1.0 ms versus 28.3±2.7 ms on the epicardium, \(P=0.74\)). Therefore, as with ARI, RT was significantly decreased by LSS (from 413.2±16.0 ms to 378.4±14.0 ms on the endocardium, \(P<0.01\), and from 418.6±12.2 ms to 377.8±13.8 ms on the epicardium, \(P<0.01\), and from 411.5±16.5 ms to 327.9±16.7 ms on the endocardium, \(P<0.01\), and from 419.0±13.1 ms to 342.4±16.2 ms on the epicardium, \(P<0.01\)) and BSS (from 400.5±17.4 ms to 312.4±15.0 ms on the endocardium, \(P<0.01\), and from 410.1±14.6 ms to 321.0±12.1 ms on the epicardium, \(P<0.01\)). As with ARI dispersion, LV epicardial and endocardial DOR was significantly increased by right, left, and bilateral SG stimulation (Figure 3).

![Figure 4](http://circep.ahajournals.org/)

Figure 4. Regional epicardial activation recovery interval (ARI) effects of LSS (A), RSS (B), and BSS (C) are shown in the left panels, whereas the right panels demonstrate a polar map from a representative animal during each condition. \(*P<0.01\) for comparison of mean ARI of the left ventricular (LV) anterior wall to other regions. \(†P<0.01\) for comparison of mean ARI of LV posterior wall to other regions. BSS indicates bilateral stellate stimulation; LAD, left anterior descending coronary artery; LSS, left stellate stimulation; RSS, right stellate stimulation; and RV, right ventricle. Regional comparisons performed using the linear mixed effects regression model with heterogeneous variances.
ARI was also decreased on the LV endocardium and epicardium during norepinephrine infusion (from 376.2±18.8 ms to 330.0±21.5 ms at 1 minute, P<0.01, to 293.3±16.2 ms at 2 minutes, P=0.01 on the endocardium, and from 377.7±16.5 ms to 351.2±19.0 ms at 1 minute, P<0.01, to 315.4±15.6 ms at 2 minutes; P<0.01 on the epicardium). There was no significant change in AT of the endocardium or epicardium (22.2±1.8 ms versus 23.7±2.0 ms at 1 minute, P=0.16, versus 22.2±1.8 ms at 2 minutes, P=0.96 on the endocardium, 26.5±1.1 ms versus 27.0±0.8 ms at 1 minute, P=0.65, versus 25.8±0.8 ms at 2 minutes; P=0.43 on the epicardium). Therefore, RT was also decreased during norepinephrine infusion (from 398.5±19.0 ms to 353.7±21.8 ms at 1 minute, P<0.01, to 315.5±16.6 ms at 2 minutes, P<0.01 on the endocardium, from 404.3±17.0 ms to 378.2±19.4 ms at 1 minute, P<0.01, to 341.2±16.2 ms at 2 minutes, P<0.01 on the epicardium). However, norepinephrine infusion did not significantly increase ARI dispersion, LV epicardial, or endocardial DOR (Figure 3D).

Figure 5. Regional endocardial activation recovery interval (ARI) effects of LSS (A), RSS (B), and BSS (C) are shown in the left panels, whereas the right panels demonstrate a representative ARI polar maps from a single animal. *P<0.05 for comparison of mean ARI of the anterior wall to other regions. §P<0.05 for comparison of mean ARI of the posterior wall to other regions. †P<0.01 when comparing apical ARI with mid wall or basal ARIs during LSS. ‡P<0.05 for comparison of apical with mid wall or basal ARIs during RSS. Regional comparisons performed using the linear mixed effects model with heterogeneous variances. BSS indicates bilateral stellate stimulation; LSS, left stellate stimulation; LV, left ventricle; and RSS, right stellate stimulation.
Effects of Stellate Ganglion Stimulation on Regional ARI

Before SG stimulation, there was no significant difference in regional ARIs of the epicardium. During LSS, LV epicardial ARI on the posterior and lateral walls shortened more than the anterior wall (Figure 4A), whereas greater ARI shortening was observed on the anterior wall compared with the posterior wall during RSS (Figure 4B). Of note, there was no significant regional ARI differences during BSS (Figure 4C).

Similar to the epicardium, before LSS, RSS, or BSS, there were no significant regional differences in mean ARIs of the LV endocardium. During LSS, LV endocardial ARI was significantly shorter on the posterior wall, lateral wall, and septum compared with the anterior wall (Figure 5A), P<0.01. LSS significantly shortened ARI of the apex (from 389.4±16.3 ms to 344.0±14.5 ms) more than the base (from 388.8±15.5 ms to 364.7±13.4 ms, P<0.001 for apex versus base).

On the other hand, during RSS, LV endocardial ARI was significantly shorter on the anterior wall (from 384.8±15.8 ms to 285.2±15.1 ms) compared with the posterior wall (from 390.6±16.9 ms to 324.9±20.7 ms, P=0.003 for anterior versus posterior). In addition, LV endocardial ARI was significantly shorter on the lateral wall (from 388.2±16.5 ms to 308.3±19.3 ms) compared with posterior wall (P=0.011 for lateral versus posterior). There were no significant differences in endocardial ARI of the septum (390.0±16.8 ms to 304.7±17.7 ms) versus the posterior wall (P=0.1 for septum versus posterior wall). RSS shortened LV endocardial ARI of the basal walls (from 385.6±15.6 ms to 299.4±15.8 ms) more than the apex (from 391.5±17.0–314.4±17.5 ms, P=0.018 for base versus apex; Figure 5B). There was a trend for greater shortening of the mid wall compared with the apex as well (from 388.2±16.7 ms to 303.9±18.3 ms on the mid wall, P=0.06). There was no significant difference in regional apico-basal ARIs during BSS (Figure 5C).

At baseline, no significant differences in epicardial ARI compared with endocardial ARI were observed (389.4±7.3
ms versus 385.0±9.3 ms, \(P = 0.25 \)). Transmural difference in ARI was not changed by LSS (3.8±7.0 ms at baseline versus −1.8±8.4 ms during LSS, \(P = 0.54 \)), RSS (4.7±6.6 ms at baseline versus 9.7±4.9 ms during RSS, \(P = 0.46 \)), or BSS (4.9±6.0 ms at baseline versus 2.8±8.0 ms during BSS, \(P = 0.89 \); Figure 6).

Effects of Norepinephrine Infusion on ARI and DOR

Before norepinephrine infusion, no significant difference in regional ARI of the LV epicardium versus endocardium was observed. ARI was significantly shortened at 1 and 2 minutes after norepinephrine administration on both the epicardium and endocardium without significant regional (Figure 7).

Relationship Between Tp-e and DOR

The relationship between Tp-e and DOR was shown in Figure 8. No significant correlation between Tp-e and whole heart DOR was found at baseline (\(R = 0.12, P = 0.47 \)). However, Tp-e was strongly correlated with whole heart DOR during stimulation (\(R = 0.86, P < 0.001 \)). This correlation was strong for both LV epicardial (\(R = 0.82, P < 0.001 \)) and LV endocardial DOR (\(R = 0.89, P < 0.001 \)). The change in Tp-e was also strongly correlated with the change in whole heart DOR (\(R = 0.70, P < 0.001 \)). Transmural differences in RT had the weakest correlation with Tp-e (\(R = -0.34, P < 0.01 \)). There was no significant correlation between Tp-e and whole heart DOR with norepinephrine infusion at 1 minute (\(R = 0.36, P = 0.25 \)) or 2 minutes (\(R = 0.41, P = 0.17 \)).

Discussion

Major Findings

The major findings of this study are (1) sympathetic nerve stimulation increased Tp-e and whole heart DOR, whereas norepinephrine infusion had no effect on Tp-e or DOR; (2) Tp-e was strongly correlated with DOR of the epicardium and endocardium during sympathetic nerve activation; and (3) the regional functional innervation patterns of the LV endocardium were similar to that of the LV epicardium during LSS, RSS, and BSS.

Increase in DOR by Sympathetic Nerve Stimulation Is Reflected in the Increase in Tp-e

Tp-e is a strong predictor of the risk of sudden cardiac death in patients with congenital channelopathies and structural heart disease.\(^7\)-12 In cardiac wedge preparation studies, Tp-e was reported to reflect TDR.\(^7\)14,15\) However, more recently, Tp-e has been reported to correlate with whole heart DOR. Opthof et al.\(^17\) investigated epicardial, endocardial, and mid myocardial recovery times in a canine LV and found no correlation between Tp-e and transmural DOR; however, Tp-e was correlated with DOR of the whole heart. Izumi et al.\(^16\) found that the Tp-e reflects spatial DOR rather than TDR in a drug-induced long QT model. Yet, effects of sympathetic activation, and specifically, stimulation of the nerves versus circulating catecholamines on Tp-e have been less clear. Our group recently reported that the change in epicardial dispersion of RT by LSS and RSS correlated with Tp-e. The results of the current
study takes these findings a step further in showing that the pattern of endocardial DOR caused by sympathetic activation followed that of the epicardium, that BSS can also increase DOR and Tp-e, and that norepinephrine does not significantly affect DOR or Tp-e. Furthermore, increase in DOR with LSS, RSS, and BSS occurred despite tachycardia, which can mitigate DOR. LSS had the strongest effect on Tp-e and DOR. Sympathetic stimulation, particularly LSS, is also known to increase risk of ventricular arrhythmias, early after depolarizations, and delayed after depolarization. Therefore, our results suggest that the increase in Tp-e may be a reflection of increased sympathetic nerve activation, which can lead to sudden cardiac death.

Importantly, norepinephrine infusion did not significantly increase DOR, ARI variance, or Tp-e in the ventricles. Tanabe et al found that epinephrine increased Tp-e as an index of DOR in patients with long QT syndrome but not healthy control patients. The increase in DOR by epinephrine in long QT syndrome patients may be caused by heterogeneous distribution of Ca2+-activated I_{Ks}, I_{Cl}, or I_{Na-Ca} channels. In this porcine model, the increases in DOR seem to be a function of sympathetic innervation rather than distribution of beta receptors or I_{Ks} channels. Circulating catecholamines uniformly affect beta adrenergic receptors throughout the ventricles, resulting in little change in DOR or Tp-e.

Figure 8. T-peak to T-end interval (Tp-e) does not correlate with dispersion of repolarization (DOR) at baseline before sympathetic nerve stimulation (A). However, it strongly correlates with the DOR of the entire left ventricular (LV) and right ventricular epicardium and LV endocardium during stellate ganglia (SG) stimulation (B). Correlation with LV epicardial DOR (C) and LV endocardial DOR (D) during SG stimulation is shown. The change in Tp-e was strongly correlated with the change in whole heart DOR (E). Tp-e did not significantly correlate with DOR at baseline before norepinephrine infusion (NE) infusion (F) or at 1 and 2 minutes after NE infusion (G,H). For comparison of the correlation between Tp-e and DOR, Pearson product-moment correlation coefficient was used. BL indicates baseline; BSS, bilateral stellate stimulation; LSS, left stellate stimulation; and RSS, right stellate stimulation.
Electrophysiological Effects of Sympathetic Stimulation on LV Epicardium Versus Endocardium

Yanowitz et al. in 1966 demonstrated that right stellactomy leads to refractory period prolongation on the LV anterior wall, and left stellactomy prolonged refractory periods on the posterior wall. However, their assessment was limited to LV anterior and posterior walls. Optphot et al. demonstrated shortening of ventricular fibrillation intervals on the posterior and lateral epicardial walls of the ventricles during LSS, whereas RSS shortened ventricular fibrillation intervals on the anterior epicardial wall. Our study shows that functional sympathetic innervation of the LV endocardium follows that of the LV epicardium. No regional differences were found during BSS. ARI shortening was greater on the posterior and lateral LV endocardium during LSS, whereas RSS decreased endocardial ARI more on the anterior and lateral endocardial walls. LV endocardial lateral wall was an area of overlap between the 2 stellates. The LV endocardial ARI on the septum significantly shortened during RSS compared with the anterior wall, whereas there was no significant endocardial ARI shortening on the septum compared with the anterior wall or posterior wall during RSS. Therefore, LV endocardial septum may be a territory of greater left sympathetic nerve innervation.

Cardiac sympathetic denervation therapy has been used as a treatment option for patients with ventricular arrhythmias refractory to medical therapy and catheter ablation. Which patients will benefit from left, right, or bilateral cervicothoracic sympathectomy and underlying mechanisms of benefit remain unclear. This study supports the hypothesis that the decrease in heterogeneity of refractoriness or DOR caused by sympathetic activation may serve as one potential mechanism behind the benefits of this procedure.

It is thought that as a result of its embryological development, sympathetic fibers may be more densely distributed on the subepicardium with denervation of the epicardium disrupting response to sympathetic stimulation. However, in this study, no significant change in ARI or RT of the LV endocardium versus epicardium during sympathetic stimulation was found. Martins et al. reported similar findings by demonstrating no change in epicardial and endocardial refractory periods before and after sympathetic stimulation. Of note, in this study, the ARI was shorter on the endocardium than epicardium at baseline, consistent with other reports of refractory periods measured in a porcine ventricle.

Limitations

Electrogram recordings on the RV endocardium and from the mid myocardial layer (M-cell layer) were not obtained in this study. In addition, general anesthesia with inhaled isoflurane can suppress nerve activity. In this study, anesthesia was switched from isoflurane to α-chloralose after surgical preparation to reduce anesthetic effects. Furthermore, a strong hemodynamic and electrophysiological response to stimulation was observed. ARI and Tp-e during each stimulation were not corrected for HR. RSS and BSS but not LSS increased HR. However, regional ARIs and RTs, TDR, and correlation of RT with Tp-e were compared at similar HR (at baseline or during intervention). In addition, any HR effects on DOR are of physiological importance. The stimulation and norepinephrine infusion protocols in this study were fixed. Therefore, it is possible that an intervention could have effects on subsequent interventions. However, after the 20 minute waiting period, all parameters, including ARI, ECG, and hemodynamic values, had returned to baseline levels before performance of additional stimulation/infusion, and the values for each intervention were compared with the prestimulation/infusion value just before the start of that intervention. In this study, we chose to infuse norepinephrine at 0.3 μg/kg/min, and it is possible that this dose may not be sufficient to raise myocardial norepinephrine levels to those comparable to nerve stimulation. However, this dose is 3 times the dose used in advanced cardiac life support protocol or septic shock. Therefore, we chose a relatively high dose to achieve a hemodynamic response similar to that achieved by nerve stimulation.

Conclusions

Tp-e is modulated by left, right, and bilateral SG stimulation, but not by circulating norepinephrine. Therefore, increases in Tp-e are a reflection of increased sympathetic nerve activity, rather than release of circulating norepinephrine. Effects of SG stimulation on regional innervation patterns of the LV endocardium are similar to that of the LV epicardium. The reduction in DOR and heterogeneity of repolarization as a result of the functional distribution of sympathetic innervation may serve as one mechanism behind the therapeutic benefits of cervicothoracic sympathectomy.

Sources of Funding

Supported by the American Heart Association Fellow-To-Faculty grant (11FTF7550004) to M. Vaseghi and NIH/NHLBI R01HL084261 to K. Shivkumar.

Disclosures

The University of California, Los Angeles, has intellectual property developed by one of the authors (K. Shivkumar) that relate to epicardial interventions.

References

Yagishita et al

T-p-e Reflects Sympathetic Nerve Activation

Sympathetic Nerve Stimulation, Not Circulating Norepinephrine, Modulates T-Peak to T-End Interval by Increasing Global Dispersion of Repolarization
Daigo Yagishita, Ray W. Chui, Kentaro Yamakawa, Pradeep S. Rajendran, Olujimi A. Ajijola, Keijiro Nakamura, Eileen L. So, Aman Mahajan, Kalyanam Shivkumar and Marmar Vaseghi

Circ Arrhythm Electrophysiol. 2015;8:174-185; originally published online December 22, 2014; doi: 10.1161/CIRCEP.114.002195
Circulation: Arrhythmia and Electrophysiology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3149. Online ISSN: 1941-3084

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circep.ahajournals.org/content/8/1/174

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Arrhythmia and Electrophysiology_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Arrhythmia and Electrophysiology_ is online at:
http://circep.ahajournals.org//subscriptions/