Atrial Fibrosis and Conduction Slowing in the Left Atrial Appendage of Patients Undergoing Thoracoscopic Surgical Pulmonary Vein Isolation for Atrial Fibrillation

Sébastien P.J. Krul, MD; Wouter R. Berger, MD; Nicoline W. Smit, MSc; Shirley C.M. van Amersfoorth, MSc; Antoine H.G. Driessen, MD; Wim Jan van Boven, MD, PhD; Jan W.T. Fiolet, PhD; Antoni C.G. van Ginneken, PhD; Allard C. van der Wal, MD, PhD; Jacques M.T. de Bakker, PhD; Ruben Coronel, MD, PhD; Joris R. de Groot, MD, PhD

Background—Atrial fibrosis is an important component of the arrhythmogenic substrate in patients with atrial fibrillation (AF). We studied the effect of interstitial fibrosis on conduction velocity (CV) in the left atrial appendage of patients with AF.

Methods and Results—Thirty-five left atrial appendages were obtained during AF surgery. Preparations were superfused and stimulated at 100 beats per minute. Activation was recorded with optical mapping. Longitudinal CV (CV_L), transverse CV (CV_T), and activation times (>2 mm distance) were measured. Interstitial collagen was quantified and graded qualitatively. The presence of fibroblasts and myofibroblasts was assessed immunohistochemically. Mean CV_L was 0.55±0.22 m/s, mean CV_T was 0.25±0.15 m/s, and the mean activation time was 9.31±5.45 ms. The amount of fibrosis was unrelated to CV or patient characteristics. CV_L was higher in left atrial appendages with thick compared with thin interstitial collagen strands (0.77±0.22 versus 0.48±0.19 m/s; P=0.012), which were more frequently present in persistent patients with AF. CV_T was not significantly different (P=0.47), but activation time was 14.93±4.12 versus 7.95±4.12 ms in patients with thick versus thin interstitial collagen strands, respectively (P=0.004). Fibroblasts were abundantly present and were associated with the presence of thick interstitial collagen strands (P=0.008). Myofibroblasts were not detected in the left atrial appendage.

Conclusions—In patients with AF, thick interstitial collagen strands are associated with higher CV_L and increased activation time. Our observations demonstrate that the severity and structure of local interstitial fibrosis is associated with atrial conduction abnormalities, presenting an arrhythmogenic substrate for atrial re-entry. (Circ Arrhythm Electrophysiol. 2015;8:288-295. DOI: 10.1161/CIRCEP.114.001752.)

Key Words: action potential optical mapping • atrial appendage • atrial fibrillation • atrial remodeling • electrophysiology • fibrosis

In patients with atrial fibrillation (AF), an increased amount of fibrosis is found in the atria. Atrial fibrosis is an important component of the arrhythmogenic substrate in patients with AF. Fibrosis can be arrhythmogenic by increasing the extracellular matrix collagen content, separating atrial myocytes, and increasing the length of activation pathways, or by direct fibroblast-cardiomyocyte coupling resulting in an increased passive electric load to the cardiomyocytes. In particular, myofibroblasts—differentiated fibroblasts that develop during pathologic stimuli—contribute to the pathological fibrotic remodeling and couple directly with cardiomyocytes have been described. The changes in fibrosis formation and (myo)fibroblast-cardiomyocyte interaction can facilitate re-entry after a premature beat emanating from the pulmonary veins. The effect of the quantity and the structural organization of fibrosis on atrial conduction abnormalities in man is unknown. Animal experiments show an increase in the heterogeneity of conduction as a result of increased interstitial fibrosis. We studied the amount and organization of interstitial fibrosis and investigated the effect of interstitial fibrosis on conduction characteristics in the left atrial appendages (LAAs) from patients with AF.

Thoracoscopic Surgery
Thirty-five LAAs were obtained from patients with AF during thoracoscopic surgery, as described before. The patient characteristics are...
The tissue samples were transported to the optical mapping setup (Endo Gia stapler, Tyco Healthcare Group). Patients gave written informed consent. The LAAs were removed using an endoscopic stapling device (Endo Gia stapler, Tyco Healthcare Group). The study was in accordance with the declaration of Helsinki and approved by the Institutional Review Board. All patients gave written informed consent. The LAAs were removed using an endoscopic stapling device (Endo Gia stapler, Tyco Healthcare Group). The LAAs were removed using an endoscopic stapling device (Endo Gia stapler, Tyco Healthcare Group). The LAAs were removed using an endoscopic stapling device (Endo Gia stapler, Tyco Healthcare Group). The LAAs were removed using an endoscopic stapling device (Endo Gia stapler, Tyco Healthcare Group). The LAAs were removed using an endoscopic stapling device (Endo Gia stapler, Tyco Healthcare Group).

WHAT IS KNOWN

- Atrial fibrosis may contribute to atrial fibrillation by separation of cardiomyocytes through extracellular matrix deposition, which may result in longer activation pathways and re-entry.
- Myofibroblasts (differentiated fibroblasts) have been suggested facilitate arhythmogenesis by direct electric coupling to cardiomyocytes and forming a passive electric load.

WHAT THE STUDY ADDS

- The structure of atrial fibrosis, rather than the percentage, forms an arrhythogenic substrate and is associated with conduction block and re-entry in human atrial myocardium.
- Particularly, the presence of thick strand of interstitial fibrosis is associated with the occurrence of conduction block on premature stimulation.
- Fibroblasts were abundantly present in left atrial tissue of patients with atrial fibrillation, but no myofibroblasts could be detected.
- Our study suggests a limited role of myofibroblasts on the substrate of atrial fibrillation.

Table. Patient Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>LAA (n=35)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean±SD, y</td>
<td>58±9</td>
</tr>
<tr>
<td>Male, n (%)</td>
<td>20 (57)</td>
</tr>
<tr>
<td>Years of AF, mean±SD, y</td>
<td>7±7</td>
</tr>
<tr>
<td>Type AF</td>
<td></td>
</tr>
<tr>
<td>Paroxysmal, n (%)</td>
<td>12 (34)</td>
</tr>
<tr>
<td>Persistent, n (%)</td>
<td>23 (66)</td>
</tr>
<tr>
<td>CHADS-VASc risk score, median, limits</td>
<td>2 (0–4)</td>
</tr>
<tr>
<td>≥1</td>
<td>16 (46)</td>
</tr>
<tr>
<td>≥2</td>
<td></td>
</tr>
<tr>
<td>Medication</td>
<td></td>
</tr>
<tr>
<td>Flecainide, n (%)</td>
<td>19 (54)</td>
</tr>
<tr>
<td>β-Blockers, n (%)</td>
<td>19 (54)</td>
</tr>
<tr>
<td>Sotalol, n (%)</td>
<td>7 (20)</td>
</tr>
<tr>
<td>Amiodarone, n (%)</td>
<td>3 (9)</td>
</tr>
<tr>
<td>Calcium-antagonists, n (%)</td>
<td>7 (20)</td>
</tr>
<tr>
<td>Echocardiographic atrial volume index, mean±SD, mL/m²*</td>
<td>41±13</td>
</tr>
</tbody>
</table>

AF indicates atrial fibrillation; and LAA, left atrial appendage.

*Atrial volume indexed for the body surface area of the patient determined <6 mo before surgery.

Optical Mapping

Preparations were submerged in a tissue bath. The superfusion fluid was kept at a temperature of 36.5°C to 37.5°C and oxygenized with a mixture of 95% O₂ and 5% CO₂ to maintain a pH of 7.4. All LAAs were stimulated at 100 beats per minute at twice diastolic threshold with a pulse width of 2 ms using an epicardial electrode. In 6 LAA preparations, short-coupled premature stimuli were applied and optical mapping recordings were made of the shortest conducting S1–S2 interval. The preparation was equilibrated for ≥30 minutes. Di-4-ANEPPS (Tebu Bio) was used as a membrane potential-sensitive fluorescent dye. A contraction uncoupler 2 to 10 mmol/L 2,3-butanedione monoxime (DAM; Sigma-Aldrich, B0753) was added if motion artifacts precluded recording of fluorescent action potentials (n=7). A MiCAM Ultima camera (SciMedia USA Ltd) was used to record epicardial images of an area of 1 cm² with a resolution of 100×100 pixels and a sample time of 0.5 ms. Images were stored using MiCAM Ultima Experiment Manager. A custom-made analysis program based on MATLAB R2006b (The MathWorks, Inc) was used to construct epicardial activation maps. The occurrence of motion artifacts precluded analysis of the repolarization of the LAA.

Measurement of Conduction Velocity

Local activation times (ATs) were determined from the steepest upstrokes of the optical action potential at each pixel. Activation maps were constructed from local ATs. To assess conduction velocity (CV), a line was drawn in the activation map in the direction of the activation wavefront (Figure 1). Subsequently, ATs were plotted against the distance from the stimulation site. This relation allowed for identification of the latency close to the stimulation site and breakdown of multiple wave fronts at larger distance of the stimulation site. CV was calculated from the slope of the linear portion of the relation between distance to the stimulation site and AT. Local longitudinal CV (CVₐ) and local transverse CV (CVₜ) were calculated from the line starting at the point of earliest activation along, which activation spread most rapidly, and the line perpendicular to that respectively, assuming that this represented fiber direction. In addition, to assess the influence of fibrotic barriers on gross transverse conduction delay in the LAA, the AT was measured along an arbitrarily chosen 2-mm line on the activation maps perpendicular to the fiber direction at the site of greatest transverse conduction slowing (Figure 1).

Collagen Quantification and Organization

After optical mapping, the LAAs were frozen at −80°C with liquid nitrogen. Slides were prepared from the recording area of the LAA. Picrosirius red staining was performed for visualization and quantification of interstitial collagen in 32 LAAs. Three to 5 photographs from each section of randomly selected areas were taken of nonoverlapping fields at ×10 magnification. The percentage of interstitial collagen of the total tissue (collagen and cardiomyocytes) was determined, after manual exclusion of epicardial, endocardial and perivascular fibrosis. Two independent observers (blinded to the origin of the sections) assessed the width of interstitial collagen strands (ICS) qualitatively (Figure 2). The width of the ICS was assessed and qualified as predominantly containing either thin (≤0.01 mm) or thick fibrotic strands (≥0.01 mm).

Fibroblast Histology

Fibroblasts were identified with antivimentin antibody (1:2000, DAKO, M0725) and an indirect peroxidase (3-amino-9-ethylcarbazole peroxidase) was used as the substrate in 27 LAAs. Sections were faintly counterstained with additional hematoxylin staining and 3 to 5 photographs of different, randomly selected areas were taken of nonoverlapping fields at ×20 magnification. The density of fibroblasts in the tissue was semiquantitatively assessed optically by 2 independent observers, blinded for section origins, based on...
the density of fibroblasts scattered throughout the tissue area (excluding microvessels). Two groups were identified (intermediate, ±<30% of tissue area and many, ±>30% of tissue area). All immunohistochemical staining included the use of positive and negative controls with omission of the primary antibody and stained using the same techniques.

Myofibroblast Histology

\(\alpha \)-smooth muscle actin (\(\alpha \)-SMA) antibody’s (1:800, Sigma, A2547) was used for staining of myofibroblasts in 27 LAAs. Because \(\alpha \)-SMA stains pericytes and vascular smooth muscle tissue as well, an anti-CD31 antibody staining (1:500, DAKO, M0823) was performed to stain endothelial cells. Cell nuclei were stained with Sytox green.

Figure 1. A, Illustration of an activation map with a line drawn in direction of the activation wavefront. In the graph (B) the activation times (ATs) are plotted against the distance from the stimulus site. The latency (L) and potential breakthrough (Br) of multiple wave fronts are identified. The slope of the linear portion of the relation between distance and AT (a) is used to calculate the conduction velocity (CV). C, Typical example of an activation map (1 cm²) of left atrial appendage (LAA). The isochronal lines are 2 ms apart and color scale is in ms; red represents the earliest and purple the latest activation. The graph (D) shows the ATs along the solid and striped lines in the activation map, which are drawn perpendicular to the isochronal lines for longitudinal and transverse conduction, respectively. CV\(_L\) indicates longitudinal CV, CV\(_T\), transverse CV; and S, stimulation.

Figure 2. A, Example of the picrosirius red staining of a left atrial appendage (LAA) with thick interstitial collagen fibers (ICS). The red color represents collagen and the yellow/orange staining represents cardiomyocytes. B, An LAA with thin ICS.
The combination of costaining of α-SMA and CD31 indicates microvasculature. Isolated α-SMA positive cells in the interstitium were considered to be myofibroblasts. Three to 5 photographs of different areas were taken of nonoverlapping fields at ×20 and ×40 magnification in each LAA to identify interstitial myofibroblasts. All immunohistochemical staining included the use of positive and negative controls with omission of the primary antibody and stained using the same techniques.

Statistics
Data are presented as mean±SD for normally distributed continuous variables or median and empirical limits for non-normally distributed variables. Categorical variables are presented in numbers with percentages. Differences were determined using an independent Student t test for normally distributed data or a Mann–Whitney U test for non-normally distributed data. To assess correlation in normally distributed data, the Pearson was used and in case of nonparametric data Spearman's was used. P<0.05 was considered significant. Statistical analyses were performed using IBM SPSS Statistics version 20.

Results
Conduction Velocity
Mean CV⊥ was 0.55±0.22 m/s and mean CV∥ was 0.25±0.15 m/s. Median anisotropy was 3.1 (1.05–13.4). CV⊥ and CV∥ were not significantly different in patients with paroxysmal or persistent AF (CV⊥: P=0.25 and CV∥: P=0.51). Other patient characteristics were not associated with CV⊥ or CV∥. In particular, the use of sodium channel blocking drugs flecainide and amiodarone were not related to CV⊥ (P=0.94) or CV∥ (P=0.14). Mean AT was 9.31±5.45 ms. AT was not different between patients with paroxysmal or persistent AF (P=0.15). Patient characteristics, including the use of sodium channel blocking drugs flecainide and amiodarone were not associated with AT (P=0.76). A total of 7 LAAs required DAM to reduce motion artifacts. CV⊥ (P=0.47), CV∥ (P=0.28), and AT (P=0.62) between the LAAs exposed to DAM and other LAAs were similar.

In the 6 LAAs with premature stimulation (shortest S1–S2 interval; mean 250 ms [200–260 ms]), CV⊥ was 0.44 m/s [0.33–0.56 m/s] at baseline and 0.30 m/s [0.15–0.40 m/s; P=0.046] at shortest S1–S2 interval. CV∥ was 0.24 m/s (0.46–0.06 m/s) at baseline and 0.16 m/s (0.05–0.25 m/s; P=0.12) at shortest S1–S2 interval. AT increased significantly from 4.73 ms (3.33–6.90 ms) to 8.08 ms (4.35–13.33 ms; P=0.028). Activation maps of the shortest captured S1–S2 interval showed prolonged ATs and clear lines of conduction block, that were absent during stimulation at basic cycle length. Figure 3 shows 2 representative activation maps from the

![Figure 3](http://circep.ahajournals.org/)

Figure 3. Effect of a short coupled extrastimulus on conduction. **A**, activation map (1 cm²) of the left atrial appendage (LAA) during pacing at 600 ms, isochrones at 2 ms. **B**, Activation map of a short coupled extrastimulus of 250 ms. Over the red line crossing a line of block, apparent conduction velocity (CV) is 0.06 m/s. The black line shows the true direction of the activation wavefront, circumventing the line of block, with an apparent CV of 0.23 m/s. **C**, Associated optical tracings of action potentials under the red line in (B). The maximum dv/dt (activation times) are marked with circles, which show conduction block along the line.
same LAA. In this LAA, the CV_L was 0.46 m/s and CV_T was 0.27 m/s at baseline. Note that at the short-coupled premature stimuli the activation pattern shows a zig-zag pattern, calculated CV_L was 0.15 m/s and CV_T was 0.13 m/s, whereas the apparent CV along line C is 0.06 m/s. However, if we follow the activation wavefront (line D), circumventing the area of conduction block, apparent CV along the activation wavefront is 0.23 m/s.

Interstitial Fibrosis

In 4 LAAs, severe artifacts precluded the semiquantitative analysis of interstitial collagen. In the remaining 28, the collagen content was 16.8±7.5%. There was no significant difference in the percentage of collagen between patients with paroxysmal and persistent AF (P=0.22). CV_L and CV_T were not associated with the amount of collagen (CV_L: P=0.098 and CV_T: P=0.91). However, a larger degree of transverse conduction delay was observed in patients with a high amount of collagen (AT: P=0.015). Other clinical characteristics of the patients, including left atrial size were not associated with the interstitial collagen content.

After qualitative assessment, 24 LAAs contained mainly thin ICS, whereas 8 LAAs had a mainly thick ICS. Thick strands were more often found in patients with a high degree of interstitial collagen content (mean 14.0% versus 21.1%; P=0.027). In addition, 7 of the 8 patients with thick ICS had persistent AF. CV_L was higher in patients with thick ICS of 0.77±0.22 m/s compared with thin ICS of 0.48±0.19 m/s (P=0.012). CV_T was not significantly different between samples with thick ICS and thin ICS (0.24±0.14 m/s compared with 0.22±0.16 m/s; P=0.47; Figure 4). However, AT was significantly higher in patients with thick ICS compared with patients with thin ICS (14.93±6.93 versus 7.95±4.12 ms; P=0.004).

Fibroblast Histology

Fibroblasts were abundantly present (intermediate, n=10 and many, n=17). A high density of fibroblasts was associated with a high CV_L, as shown in Figure 5 (intermediate, 0.44±0.11 m/s versus many, 0.71±0.24 m/s; P=0.007). No differences were observed in CV_T (intermediate, 0.21±0.09 m/s versus many, 0.30±0.20 m/s; P=0.66) and AT (intermediate, 9.67±3.95 ms versus many, 10.64±6.68 ms; P=0.90). Furthermore, all the specimens with thick ICS also had many fibroblasts (P=0.008).

Myofibroblast Histology

The combination of α-SMA and CD31 staining revealed a significant amount of interstitial atrial microvasculature, composed of CD31 positive smooth muscle cells bordered by a rim of α-SMA positive pericytes. Myofibroblasts could not be identified in the LAA (n=27) because no isolated α-SMA positive interstitial cells were present (Figure 6).

Discussion

This study shows that the structural local components of fibrosis, specifically the collagenous interstitial matrix, played an important role in modulating CV_L and CV_T in LAAs obtained from patients undergoing antiarrhythmic surgery for AF. Patients with persistent AF or high degree of interstitial collagen had predominantly thick ICS. This was associated with increased CV_L, whereas local CV_T was not affected. In spite of increased CV_L, more transverse activation delay was present in these preparations and areas of activation block occurred, leading to zig-zag conduction. More pronounced slowing of conduction was observed after short-coupled stimuli. They also induced lines of conduction block, which were absent under baseline stimulation. Fibroblasts were abundantly present in the human LAA, and was associated with thick ICS and a high CV_L. No myofibroblasts were detected in the LAAs.

The Role of Fibrosis in the Arrhythmogenic Substrate of AF

The patients undergoing thoracoscopic surgery for AF had a mean amount of 16.8% fibrosis. In a study investigating patients with AF with or without mitral valve disease 7.6% fibrosis was reported in the LAAs of patients with lone AF and 10.7% in patients with mitral valve disease using similar methods of fibrosis quantification. The patients in our study are patients with highly symptomatic AF with an indication for surgical treatment. The high amount of fibrosis in our patients might be explained by large atria, older age, and a greater predominance of persistent AF compared with earlier...
studies. However, no single patient characteristic was associated with the amount of fibrosis in the LAA in our data. In our patients, the organization of interstitial collagen rather than the amount was associated with conduction changes.9 The contribution of fibrosis to the arrhythmogenic mechanism has been extensively studied in monolayers of cultured myocytes, animal models, and in human ventricular myocardium.4,9,13,14 In our experiments, we observed the induction of activation delay, caused by propagation of the activation front around inexcitable barriers of collagen. In these LAAs, CV was only modestly affected, possibly because of increased transverse fiber separation.4,15 This may result in a heterogeneity of conduction, such as the occurrence of unidirectional conduction block and re-entry, facilitating both the induction and the maintenance of AF.16 At baseline, pacing some LAAs showed a high anisotropy and activation delay. High anisotropy might facilitate the development of AF because of ectopic foci.17 In the presence of short-coupled premature stimuli, such as during AF, lines of conduction block developed, and the activation wavefront propagated around this area of block (Figure 3).

CV is also determined by excitability and coupling, mediated by the voltage-gated sodium channels and connexins, respectively.18 Therefore, we cannot fully exclude that changes in CV between patients might be related to changed function or expression of the voltage-gated sodium channels.

Figure 5. A, Section of a left atrial appendage is shown with intermediate fibroblast staining. B, Section with a high number of fibroblasts. C, High number of fibroblasts was associated with a higher longitudinal CV (CVL; \(P=0.007\)), whereas no difference is found in transverse CV (CVT). CV indicates conduction velocity.

Figure 6. High contrast pictures of the combined fluorescence of Sytox Green (cell nuclei, blue), CD31 (endothelial cells, red), and α-SMA (α-smooth muscle actin; myofibroblasts, pericytes and vascular smooth muscle tissue, green) at \(\times20\) (A) and \(\times40\) (B) magnification. Contrast is increased to visualize the background staining of the cardiomyocytes with CD31 (red) and α-SMA (green). Both the transverse and the longitudinal myocardial fibers are visible. The yellow and red\ green costaining reveals the microvasculature. No isolated α-SMA staining, indicating the presence of myofibroblasts, could be found.
and (lateralization of) connexins. However, a severe reduction in functional gap junction, as well as a reduced voltage-gated sodium channels would result in a reduced CV, whereas we observed an increase in CV and an unaffected CV. These findings illustrate the local arrhythmogenic effect of fibrosis in the pathophysiology of AF, but our data do not permit conclusions about the question whether fibrosis is a result or the cause of AF.

The Role of Fibroblasts in the Substrate of AF
A high density of fibroblasts in the LAA was associated with thick ICS, suggesting a local increase of extracellular matrix deposition. The increased extracellular matrix results in a separation between cardiomyocytes and subsequently in an increase in CV. In in-silico models, fibroblasts have been described to act as passive electric load and to depolarize cardiomyocyte resting membrane potential through gap junctional coupling with myocytes. However, only the myofibroblast, a differentiated form of the fibroblast, connects to cardiomyocytes in in-vitro cell layer models. This connection can result in discontinuous slow conduction and induces spontaneous electric activity. Our observations argue against such a mechanism in the patients that we studied because CV was increased in the presence of a high density of fibroblasts, which is not expected if reduced direct coupling is present. Alternatively, fibroblasts might exert their influences on CV by a paracrine mechanism. In cell-cultures, a significant paracrine effect was found on CV, resulting in reduced CV. However, our data showed an increase in CV, in the presence of many fibroblasts, thus it is unlikely that the paracrine influences on CV have a major role in these patients.

The Role of Myofibroblasts in the Substrate of AF
In response to pathological stimuli, fibroblasts differentiate into myofibroblasts. In our selected population of patients with symptomatic AF and enlarged atria undergoing thoracoscopic surgery for AF, no myofibroblasts were detected in the LAAs. However, myofibroblasts might play a more prominent role in other, more acute, causes of AF (eg, valvular AF, AF after ischemia, and experimental models) or in the earlier phases of AF. There, the myofibroblasts might contribute to an increase in extracellular matrix and subsequently differentiate to inactive fibrocytes in a later phase of the disease.

Clinical Implications
The major finding of our study is that in patients with AF, an arrhythmogenic substrate for atrial re-entry is present, caused by the deposition of collagen. It may be conceivable that thick collagen strands anchor rotors that sustain human AF. Identificiation of the patients with severely affected fibrotic atria might help to guide therapeutic decision-making. Recent studies using noninvasive characterization of the fibrotic phenotype using MRI have shown an inverse relation between the success of catheter ablation for AF and the amount of fibrosis present in the atrium. Although present imaging techniques allow the detection of large areas of fibrosis, future developments might increase the resolution and enable the detection of smaller fibrotic strands.

Fibrosis consists of a dynamic substrate of fibroblasts and extracellular matrix in which collagen turnover is between 3% and 5% per day. A reduction in extracellular matrix secretion by fibroblasts or the prevention of the formation or migration of myofibroblasts, could possibly reduce or alter the deposition of collagen and could be a potential target of upstream therapy. Studies already have already demonstrated a moderate effect of upstream therapy in the setting of primary prevention. However, it is unclear whether secondary prevention can induce reverse remodeling and dissolve this arrhythmogenic substrate.

Limitations
Because of the nature of surgery, we could obtain only LAAs, but no left atrial samples without cardioplegia for the electrophysiological experiments. Also, we were not able to obtain tissue from healthy control patients. It is unclear whether the LAA myocytes are different from the rest of the atrium. The distribution and amount of interstitial collagen in the LAA probably reflects the fibrotic changes in the left atrium, although no study has investigated the distribution of fibrotic remodeling throughout the entire human atrium. However, a similar amount of (increased) fibrosis was observed at different parts of the left atrium in patients with AF. Our model of the LA provides a unique opportunity to study the atrial substrate in patients with AF.

All patients underwent the procedure under general anesthesia and remained on antiarrhythmic drugs. These drugs could have influenced the electrophysiological findings in the LAA. However, no relation of the antiarrhythmic drugs with CV, especially sodium channel blocking drugs was observed.

After administration of DAM to the superfusion medium, a certain degree of motion artifact remained. Although DAM can influence the electrophysiological properties of the LAA, the LA samples that received DAM were limited (n=7), were evenly distributed among the groups and did not deviate from results of samples without DAM. Because of motion artifacts induced by LAA contraction, determination of action potential characteristics other than the upstroke (ie, repolarization) could not be reliably performed.

Conclusions
In patients undergoing thoracoscopic surgery for AF, the structural local interstitial components of fibrosis modulate conduction in the LAA. Patients with persistent AF had more thick interstitial fibrotic strands, which was associated with an increased longitudinal CV, consistent with a separation of myocardial fibers. Local transverse conduction was not affected by these fibrotic strands, but activation delay was present because of areas of activation block. Slowing of conduction and increased areas of conduction block were observed after short-coupled stimuli, but were absent under baseline stimulation. Fibroblasts were abundantly present in the human LAA and were associated with thick interstitial fibrotic strands and increased longitudinal conduction. However, myofibroblasts were absent in the human LAAs. Our observations demonstrate that the severity and structure of local interstitial fibrosis is associated with atrial conduction abnormalities, presenting an arrhythmogenic substrate for atrial re-entry.
Acknowledgments
We thank N. van Geloven, PhD, for her help with the statistical analysis of our data; P. Teeling, J.B.G. Mulder, and P.H.M. Ploegmakers for the work on the LAA sections; and A.A.M. Wilde, MD, PhD, for his critical review of our article.

Sources of Funding
Dr de Groot is supported by personal grants from the Netherlands Heart Foundation 2009T021 and ZonMw/NWO (The Netherlands Organisation for Scientific Research) 016.146.310.

Disclosures
Dr Driessen is a consultant to Atricure Inc. Dr Groot is supported by a personal grant from the Netherlands Heart Foundation, 2009T021, ZonMw/NWO (The Netherlands Organisation for Scientific Research) 016.146.310, receives unrestricted funding from Atricure and is a consultant to Atricure. The other authors report no conflicts.

References
Atrial Fibrosis and Conduction Slowing in the Left Atrial Appendage of Patients Undergoing Thoracoscopic Surgical Pulmonary Vein Isolation for Atrial Fibrillation

Circ Arrhythm Electrophysiol. 2015;8:288-295; originally published online February 11, 2015; doi: 10.1161/CIRCEP.114.001752
Circulation: Arrhythmia and Electrophysiology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3149. Online ISSN: 1941-3084

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circep.ahajournals.org/content/8/2/288

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Arrhythmia and Electrophysiology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Arrhythmia and Electrophysiology is online at:
http://circep.ahajournals.org/subscriptions/