Twelve-Lead ECG of Ventricular Tachycardia in Structural Heart Disease

Marta de Riva, MD; Masaya Watanabe, MD, PhD; Katja Zeppenfeld, MD, PhD

In patients with structural heart disease (SHD), defined by the presence of myocardial scarring either on cardiac imaging or electroanatomical mapping, catheter ablation is increasingly used for the treatment of ventricular tachycardia (VT).

With more detailed knowledge of potential substrates and anatomic structures involved in VT, not only the endocardium of the left ventricle (LV) and right ventricle (RV) but also more complex structures like the aortic root, the cardiac veins, or the epicardium have become areas of interest for ablation.

Preprocedural analysis of the clinically documented VT 12-lead ECG is often used to predict the VT site of origin (SoO), and it is considered to be an important tool for planning the ablation, to estimate the probability of success, and to recognize potential procedural limitations and related risks. These factors may have important implications not only for patient advice and decision making but also for the selection of a center capable to perform the expected procedure.

Because the majority of inducible VTs in patients with SHD are not hemodynamically tolerated, a detailed analysis of the VT 12-lead ECG of each induced VT may also be helpful. Combining the ECG with information of the scar size and distribution obtained from electroanatomical mapping during sinus rhythm or from preprocedural imaging may direct mapping to the area of interest with the potential of increasing procedural success and to reduce procedural duration.

In this review, we will focus on the reported evidence for the value of the 12-lead VT ECG as a mapping tool in patients with scar-related VT and discuss its potential implications when combined with scar information from electroanatomical mapping or imaging.

VT SoO

The mechanism of the majority of VTs in patients with structurally normal hearts is focal, and the 12-lead ECG can be helpful to predict its SoO because rapid activation of the normal myocardium from a focal source results in typical QRS patterns.

As a general rule, VTs originating from the structurally normal LV have a right bundle branch block (RBBB) morphology (defined as predominant R in lead V1) and VTs from the normal RV have a left bundle branch block (LBBB) morphology (defined as predominant S in lead V1). The precordial transition for RBBB VTs (first lead with a predominant S) changes from positive concordant for VTs originating from the base of the LV to progressively earlier transition in V2–V4 as the VT origin moves toward the apex of the ventricle. For LBBB VTs, VTs originating from the basoseptal area of the RV have an early transition (first lead with a predominant R), and the transition becomes progressively later as the VT origin moves toward the ventricular free wall. With regard to the frontal plane axis, VTs originating from the superior aspect of the ventricles show an inferior axis (predominant R in aVF), VTs from the inferior aspect of the ventricles show a superior axis (predominant S in aVF), LV free wall VTs have typically a right axis (with a dominant S in I and aVL), and septal VTs typically have a left axis (with a dominant R in I and aVL). Finally, septal VTs have a narrower QRS than VTs from the ventricular free wall.

In contrast to patients with structurally normal hearts, the majority of VTs in patients with SHD are because of scar-related re-entry. The SoO of a scar-related re-entrant VT has been differently defined as (1) the VT exit site, from which the normal myocardium is rapidly activated, which corresponds to the scar border and coincides with the QRS onset on the surface ECG second re-entry circuit exit site from which the activation waveform emerges from the critical slow conducting VT isthmus, which may not necessarily correspond to the scar border and may precede the activation of the rapidly conducting myocardium with only little effect on the 12-lead ECG; or (3) the target site for ablation, usually defined as the critical slow conducting VT isthmus, which is activated during diastole, thereby not contributing to the surface ECG at all.

The 12-lead ECG morphology of a scar-related re-entrant VT depends mainly on the VT exit site, or the site(s) or the area(s) from which the normal myocardium is activated. Thus, only if the re-entry circuit exit site coincides with the scar border, the 12-lead VT ECG may be helpful to directly guide to the area of interest for ablation (Figure 1; Case 1 in the Data Supplement).

Furthermore, the overall size and distribution of the scar and the size, distribution, and properties of the remote myocardium determine the overall 12-lead VT ECG morphology. Therefore, in patients with large scars, the accuracy of the
12-lead ECG to localize the VT SoO may be limited also for tachycardias with a focal mechanism.

Value of the 12-Lead ECG to Predict the Endocardial VT SoO in Patients With Previous Myocardial Infarction

SoO as Exit Site

In the pioneering work of Miller et al., the VT SoO was defined as the earliest recorded activity on the second half of the diastole during endocardial VT activation mapping. All 182 mapped VTs from 102 patients with single previous myocardial infarction (MI) had 1 endocardial site activated at least 40 ms before the QRS onset. Each 12-lead ECG of VT was categorized according to the location of the MI (anterior or inferior), the BBB type configuration, the frontal plane axis, and 1 of 8 prespecified precordial R-wave progression patterns (Figure 2A). A specific morphology of VT was defined as a characteristic morphology (based on the combination of these 4 factors) that was associated with 1 of 11 predefined LV regions based on fluoroscopy with a positive predictive value of >70% (Figure 2B).

Of the 128 VTs in 73 patients with anterior MI, only 47 (37%) had such a specific morphology. Fifty VTs (39%) had an LBBB morphology, suggesting a septal VT exit site. Among the LBBB VTs, 37 (74%) had 1 of 2 identified specific patterns: 90% of the VTs with a left superior axis and a late or no transition were mapped to the inferoapical septum, and the majority of VTs (81%) with inferior axis regardless of the precordial pattern were mapped to the inferoapical septum (Case 2 in the Data Supplement). Of the 78 VTs (61%) with an RBBB morphology, only 10 (13%) had a specific morphology: 7 of 10 VTs (70%) that had a right inferior axis and either dominant or abrupt loss precordial pattern were also related to the inferoapical septum (Figure 2C).

For inferior MI, the results were better. In 40 of 54 VTs (73%) from 35 patients, a specific morphology could be identified. Of the 23 VTs (43%) with an LBBB morphology, 88% of those with left superior axis and a growing precordial pattern were mapped to the inferobasal septum. Thirty-one VTs had an RBBB morphology (57%), and of them, 2 specific morphologies could be determined: 14 of 16 VTs (88%) with superior axis and either an early or late reverse precordial pattern were mapped to the inferobasal free wall, whereas 8 of 9 VTs (75%; Case 3 in the Data Supplement) with right inferior axis and a late reverse precordial pattern were mapped to the inferolateral wall (Figure 2D).

In this study, an association between a specific 12-lead ECG VT morphology and 1 of the 11 predefined LV regions could only be found for 48% of the mapped VTs. Specific morphologies were more often identified in patients with inferior infarction and for VTs with an LBBB morphology. In patients with anterior MI, only apicoseptal exit sites could be correctly identified.

The algorithm was developed before the advent of electroanatomical mapping and delayed enhancement magnetic resonance imaging (MRI) to delineate scar. Accordingly, it could not correct for variations in anterior and lateral scar extension, which may explain the lack of additional identified specific patterns, in particular, for RBBB VTs after anterior MI (Cases 4 and 5 in the Data Supplement). In contrast, scar extension in inferior MI may be less variable, as these scars are often restricted to the basal inferoseptal and posterior regions with the mitral annulus as 1 common boundary. The limited mapping density, with on average 9 catheter positions using a catheter with a 1-cm tip electrode and an interelectrode spacing of 5 mm, may have also reduced the accuracy of the algorithm. The broad definition of a VT exit site applied in this study may encompass not only VT exit sites from the scar border zone and VT re-entrant circuit exit sites but also critical isthmus sites, which may further influence the predictive value of the algorithm for a specific location. Of note, the RV as a potential SoO was not included, which may contain re-entry circuit and scar exit sites (Case 2 in the Data Supplement).

On the basis of the assumption that pacing at the VT endocardial exit site may generate a QRS morphology identical to the VT morphology, Kuchar et al. proposed a different algorithm for localizing the VT SoO. They used ventricular pacemapping as surrogate for a VT exit site. Ninety-three 12-lead ECGs recorded during pacing from different sites in 22 patients with single or multiple previous MI were analyzed and correlated with 1 of 24 LV regions based on fluoroscopy. Five paced QRS complex features could be related or were exclusive for a particular region: (1) a negative QRS in precordial lead V1 was typical for septal sites, but it was never observed during pacing at lateral LV sites; (2) the QRS in

Figure 1. A, Schematic representation of a ventricular tachycardia (VT) re-entrant circuit. The re-entrant circuit exit site corresponds to the scar border zone. Rapid activation (indicated by large arrows) of the normal myocardium determines the VT QRS morphology. Pacing at the scar exit site will likely resemble the VT morphology. B, Schematic representation of a complex scar with 1 potential VT re-entrant circuit. The re-entrant circuit is located within the scar. The wavefront emerges from the exit of the re-entrant circuit isthmus and propagates through multiple small pathways activating the remaining normal myocardium from different sites giving rise to a fused QRS complex. In this case, the VT morphology may not help to predict the scar exit site.
Figure 2. Algorithm proposed by Miller et al⁴ to predict the endocardial ventricular tachycardia (VT) site of origin based on the 12-lead ECG VT morphology including bundle branch block, axis, and precordial transition pattern (A) according to a 11-left ventricular region model (B) in patients with anterior (C) and inferior (D) myocardial infarction. Regions of VT origin: A, inferoapical septum; B, anteroapical septum; C, anteroapical free wall; D, anterobasal free wall; E, anterobasal and mid septum; F, inferobasal septum; G, inferomedial free wall; H, inferolateral free wall; I, midinferior wall; J, inferoapical free wall; regions G and H together are the inferobasal free wall. LBBB indicates left bundle branch block; LI, left inferior axis; LS, left superior axis; RBBB, right bundle branch block; RI, right inferior axis; and RS, right superior axis. Reprinted from Miller et al⁴ with permission of the publisher. Copyright ©1988, Wolters Kluwer Health.
precordial lead V4 was never negative by pacing at the basal LV and never positive when pacing at apical regions; (3) a positive QRS in lead I was never observed when pacing from the lateral LV; (4) a predominant negative QRS in lead aVL was observed when pacing from the lateral LV and a predominant positive QRS in lead aVL when pacing from the septum; and (5) a positive QRS in lead II was never observed during pacing from inferior sites.

From these data, an algorithm was derived and subsequently tested in 44 induced VTs from 42 additional patients in which the VT SoO could be determined by activation mapping (Figure 3). Precise localization of the endocardial VT exit site using this algorithm was only possible for 39% of the VTs. The algorithm showed a high accuracy (80%–90%) to distinguish between anterior, inferior, septal, and lateral LV regions, but it was not useful to predict central and midventricular sites and was only moderately successful in differentiating sites in the long axis of the ventricle (eg, basal versus apical; 55%–70%).

As for the algorithm of Miller et al, the size and extent of the scar may significantly influence the accuracy of the algorithm to predict the VT SoO. Moreover, pacing at the scar border zone and at potential critical isthmus sites within the scar may not necessarily result in the same 12-lead ECG morphology with different stimulus to QRS intervals than the VT ECG. In particular, for small scars, activation patterns during pacing may be different from the propagation during VT because re-entry circuits may also be determined by the areas of functional block only present during VT. In these cases, a 12/12-lead pace match of the VT ECG cannot be achieved. For large scars, de Chillou et al recently demonstrated that the best match between the paced QRS morphology and the VT morphology could be obtained if pacing was performed at the VT exit region or toward the exit part of the critical VT isthmus. In contrast, pacing at the VT entrance region or at the entrance part of the critical VT isthmus resulted in a completely different QRS complex morphology because of the activation of the preserved myocardium in the opposite direction than during VT. Despite this limitation, careful comparison of the paced ECG morphologies with the VT ECG may still be useful to determine the area of interest if combined with the electroanatomical scar information (Case 3 in the Data Supplement). In addition, pacing at longer cycle length than VT cycle length may also significantly influence the 12-lead ECG. In the study by Kuchar et al, a fixed pacing rate of 400 ms was used, which may also partly explain the low predictive value of the algorithm to precisely localize the VT SoO.

In 2007, Segal et al correlated 12-lead ECG characteristics during VT with VT exit site determined by noncontact mapping. VT ECGs were categorized according to BBB configuration, frontal plane axis, and R-wave transition. The VT exit site was defined as the point from which the rapidly expanding systolic activation on the isopotential map occurred synchronously or just before (≤40 ms) QRS onset and was allocated to 9 predefined LV segments based on the 3-dimensional (3D) reconstruction of the endocardial LV surface using the Ensite system (Ensite 3000; Endocardial Solutions, Inc, St Paul, MN).

A total of 121 VTs from 51 patients with previous (single or multiple) MI were analyzed. All VT ECGs could be categorized in 10 ECG patterns, from which, 8 accounting for 86 VTs (71%) had a positive predictive value of ≥70% for a predefined VT exit site region. Only the BBB morphology and the frontal plane axis were used in the construction of this algorithm because no consistent R-wave precordial transition pattern could be identified (Table 1). All LBBB VTs
had a septal exit site, and in contrast to Miller et al, a positive predictive value of ≥70% was more common for RBBB than for LBBB VTs (76% versus 43%). Rapid activation was often recorded from the mid LV regions that are less often involved in either anterior-apical or inferior-basal infarctions. VT exit sites were therefore likely to correspond to the true scar border zone.

The application of distinct definitions for the VT SoO and the inclusion of different patient populations with different scar characteristics among studies (eg, single previous MI in the study by Miller et al and multiple previous MIs in the studies by Kuchar et al and Segal et al) may also explain the inconsistent findings between algorithms.

More recently, the University of Michigan’s group demonstrated that the value of the 12-lead VT ECG for localizing the VT exit site improves substantially when using an automated computerized algorithm. To create the algorithm, digitalized 12-lead ECGs of pacemaps from the scar area of 34 patients with previous MI and the locations of the pacemaps based on a 10-LV region model were used. Subsequently, the training data containing only pacemaps were validated by patients with previous MI and the locations of the pacemaps were found to be consistent with the true scar border zone.

The application of distinct definitions for the VT SoO and the inclusion of different patient populations with different scar characteristics among studies (eg, single previous MI in the study by Miller et al and multiple previous MIs in the studies by Kuchar et al and Segal et al) may also explain the inconsistent findings between algorithms.

More recently, the University of Michigan’s group demonstrated that the value of the 12-lead VT ECG for localizing the VT exit site improves substantially when using an automated computerized algorithm. To create the algorithm, digitalized 12-lead ECGs of pacemaps from the scar area of 34 patients with previous MI and the locations of the pacemaps based on a 10-LV region model were used. Subsequently, the training data containing only pacemaps were validated by patients with previous MI and the locations of the pacemaps were found to be consistent with the true scar border zone.

Most recently, the University of Michigan’s group demonstrated that the value of the 12-lead VT ECG for localizing the VT exit site improves substantially when using an automated computerized algorithm. To create the algorithm, digitalized 12-lead ECGs of pacemaps from the scar area of 34 patients with previous MI and the locations of the pacemaps based on a 10-LV region model were used. Subsequently, the training data containing only pacemaps were validated by patients with previous MI and the locations of the pacemaps were found to be consistent with the true scar border zone.

Table 1. Algorithm Proposed by Segal et al to Predict the Endocardial VT Site of Origin According to a 9-LV Region Model Based on the 12-Lead ECG VT Morphology Including BBB and Frontal Plane Axis

<table>
<thead>
<tr>
<th>12-Lead ECG Patterns With Specificities or Sensitivities ≥70% for VT Exit Site</th>
<th>BBB</th>
<th>Axis</th>
<th>Exit</th>
<th>PPV%</th>
<th>Sensitivity%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RBBB</td>
<td>LS</td>
<td>Inferomeridial/Inf erobasal</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>RBBB</td>
<td>RS</td>
<td>Inferopical</td>
<td>100</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>RBBB</td>
<td>RS</td>
<td>Inferopical</td>
<td>77</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>RBBB</td>
<td>RI</td>
<td>Anteromiodial</td>
<td>77</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>RBBB</td>
<td>LI</td>
<td>Anterobasal</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>LBBB</td>
<td>RS</td>
<td>Bassoapical</td>
<td>100</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>LBBB</td>
<td>LS</td>
<td>Medioapical</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>LBBB</td>
<td>LS</td>
<td>Apicoapical</td>
<td>22</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>LBBB</td>
<td>RI</td>
<td>Medioapical</td>
<td>100</td>
<td>22</td>
</tr>
</tbody>
</table>

BBB indicates bundle branch block; LBBB, left bundle branch block; LV, left ventricle; and VT, ventricular tachycardia.

Reprinted from Segal et al with permission of the publisher. Copyright ©2007, John Wiley & Sons, Inc.

Using the 12-lead ECGs of 58 VTs from 33 patients with post-MI in which the VT exit site was determined by pacemapping, the accuracy of the algorithm for assigning both the 12-lead ECG of pacemaps from the training sample and the VTs of the testing sample to the correct anatomic region was ≈70% (in comparison with an estimated accuracy of 19% for the algorithm of Miller et al and 36% for the algorithm of Segal et al) with a spatial resolution of 15 cm². The accuracy of the algorithm varied from region to region, and in contrast to the algorithm of Miller et al, it was higher for anterior infarcts and worse for apical regions (≈50%).

In all previously commented studies, the training cohort to create the algorithms differed from the validation cohort. This approach precludes correction for interindividual variations like LV and RV anatomy, rotation of the heart, or lead placement, which may have also contributed to their limited accuracy to predict the VT SoO.

Table 2 summarizes the proposed algorithms to identify the endocardial VT SoO in patients with previous MI.

SoO as Target Site for Ablation

Activation of the slow conducting critical isthmus does not often directly contribute to the 12-lead VT ECG. However, the combination of different 12-lead VT morphologies inducible in 1 patient may provide important, although indirect, information for the location of an ablation target site. Wilber et al demonstrated that in patients with previous inferior MI inducible for 2 specific VT morphologies, 1 with LBBB and left superior axis and the other with RBBB and right superior axis, the critical isthmus site for both VTs can be located in the inferobasal LV, close to the mitral annulus. In this study, 4 of 12 patients after inferior MI had these 2 inducible VT morphologies. In each of these 4 patients, participation of this mitral isthmus as critical slow conducting part of the reentrant circuit was demonstrated during both RBBB and LBBB tachycardias by entrainment mapping. A single radiofrequency application abolished both VT morphologies, suggesting that this critical site was shared by both VTs (Figure 4). Of interest, the BBB configuration and the frontal plane axis of the VTs were consistent among the 4 patients. However, some important differences in the precordial patterns were observed, suggesting that in particular, the precordial leads are more influenced by interindividual variations, such as the shape of the heart and scar distribution (Figure 5). With increasing septal scar extension,

Table 2. Proposed Algorithms to Predict the Endocardial VT Site of Origin in Patients With Previous Myocardial Infarction

<table>
<thead>
<tr>
<th>First Author and Year of Publication</th>
<th>No. of Patients</th>
<th>No. of Analyzed VTs</th>
<th>No. of VTs in which the Algorithm Could Be Applied</th>
<th>No. of VTs Correctly Localized by Algorithm</th>
<th>VT Site of Origin Definition</th>
<th>Method</th>
<th>Based on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miller, 1988</td>
<td>102</td>
<td>182</td>
<td>87 (48%)</td>
<td>73 (84%)</td>
<td>Exit site/Ablation target site</td>
<td>Activation mapping</td>
<td>11-region LV model by fluoroscopy</td>
</tr>
<tr>
<td>Kuchar, 1989</td>
<td>42</td>
<td>44</td>
<td>44 (100%)</td>
<td>17 (39%)</td>
<td>Exit site</td>
<td>Pacemapping</td>
<td>24-region LV model by fluoroscopy</td>
</tr>
<tr>
<td>Segal, 2007</td>
<td>51</td>
<td>121</td>
<td>86 (71%)</td>
<td>8/9 (89%)</td>
<td>Exit site</td>
<td>Noncontact mapping</td>
<td>9-region LV model by CARTO system</td>
</tr>
<tr>
<td>Yokokawa, 2012</td>
<td>33</td>
<td>58</td>
<td>58 (100%)</td>
<td>41 (71%)</td>
<td>Exit site</td>
<td>Pacemapping</td>
<td>10-region LV model by CARTO system</td>
</tr>
</tbody>
</table>

LV indicates left ventricle; and VT, ventricular tachycardia.
also LBBB VTs with early precordial transition and inferior axis can be related to a mitral isthmus re-entry circuit (Figure 5, patient 4). In addition, with more apical scar extension, the precordial transition of RBBB VTs to a dominant negative QRS complex may be observed in V4 despite a basolateral exit site (Figure 5, patients 1 and 3).

Value of the 12-Lead ECG to Predict an Epicardial Versus an Endocardial LV VT SoO

Previous Reports

Critical parts of the re-entrant circuit that are located deep in the myocardium or at the subepicardium can often not be abolished by endocardial ablation. This is more common in patients with nonischemic cardiomyopathy (NICM), in which the VT substrate is frequently located intramurally or subepicardially, often requiring an epicardial or a combined endoepicardial ablation to achieve procedural success.11,12 Delayed enhancement MRI performed before mapping and ablation can delineate the 3D scar geometry and its relationship with the endocardial and epicardial surfaces. On the basis of the MRI-derived scar information, patients who may benefit from an endocardial, epicardial, or combined approach can be selected.13 However, currently, MRI imaging in patients with implanted defibrillators is only available at selected centers. In addition, artifacts because of leads and pulse generators may hamper detailed analysis of, in particular, anterior basal segments.14 Electroanatomical voltage mapping may be an alternative to detect myocardial scar. However, endocardial bipolar voltage mapping is limited by the presence of endocardial viable myocardium in patients with midmyocardial or subepicardial scars.15 The value of endocardial unipolar voltage mapping to unmask epicardial scars has been recently suggested.16 However, if compared with delayed enhancement MRI, unipolar endocardial voltage mapping has only a moderate sensitivity and specificity for detecting subepicardial scars.17

Using the 12-lead ECG of the VT to determine the required access is appealing. Berruezo et al18 were the first to propose ECG criteria to distinguish an epicardial from an endocardial LV VT SoO in a mixed group of patients with ischemic and NICM. All criteria are based on the assumption that ventricular activation originating from the epicardium is followed by a transmural activation delay until the subendocardial Purkinje system is reached. This propagation pattern will prolong the initial part of the QRS resulting in visible slurring or widening.

LBBB VTs were excluded from the initial analysis as these VTs were considered to originate from the interventricular septum.

A pseudodelta wave, ≥34 ms: interval from the earliest ventricular activation to the earliest rapid deflection in
any precordial lead; an intrinsicoid deflection time, \(\geq 85 \) ms: interval from the earliest ventricular activation to the peak of the R wave in V2; and the shortest RS complex, \(\geq 121 \) ms: interval from the earliest ventricular activation to the nadir of the first S wave in any precordial lead predicted the failure of an endocardial VT ablation with a high sensitivity and specificity in patients with SHD (Case 6 in the Data Supplement).

Figure 5. Delayed enhancement magnetic resonance imaging–derived 3-dimensional reconstructions of scars of 4 patients with previous inferior myocardial infarction are shown. Orange indicates core scar, and yellow indicates border zone based on signal intensity. The pacing site that corresponds to the displayed QRS-paced morphologies is marked by yellow dots. A, Paced 12-lead ECGs at the septal border of the inferior scar. All paced QRS had a left bundle branch block morphology and monophasic R waves in I, V5, and V6. With higher septal scar extension, the frontal plane axis shifts gradually from left superior to left inferior axis. B, Paced 12-lead ECGs at the lateral border of the inferior scar. All paced QRS had a right bundle branch block morphology and a terminal S wave in V5 and V6. With higher lateral scar extension, the morphology of I changes from a monophasic R wave to a progressively pronounced terminal S wave and the morphology of III from a QS to a progressively higher amplitude of the terminal R wave.
Following the same concept, Daniels et al.19 showed that a maximum deflection index of ≥ 55 ms, defined as the interval from the earliest ventricular activation to the peak of the largest amplitude deflection in each precordial lead (taking the lead with the shortest time) divided by the QRS duration, identified an epicardial VT origin with a high sensitivity and specificity (>95%) in patients with idiopathic VTs with both RBBB and LBBB morphologies (Figure 6).

Bazan et al.20 reported that these previously suggested interval criteria, although useful to identify an epicardial LV-VT SoO, did not perform uniformly for all LV regions. Additional site-specific morphological criteria were proposed based on the concept that the initial vector of impulse propagation from the epicardium toward the endocardium would result in the presence of an initial Q wave in the ECG leads reflecting the site of epicardial activation (or the absence of a Q wave in opposite leads). A Q wave in lead I for basal superior and apical superior VTs was associated with an epicardial SoO. In addition, the absence of Q waves in any inferior leads for basal superior VT or a Q wave in inferior leads with VTs arising from the basal inferior and apical inferior LV also indicated an epicardial SoO.

Because the substrate for VTs in patients with NICM is often located in the basal LV, clustering around the mitral and aortic annulus, Vallès et al.21 from the same group, evaluated the value of the previously proposed interval and morphological criteria to predict an epicardial VT origin from this specific LV region. Of 24 VTs with an RBBB morphology originated in the basal superior or lateral LV from 14 patients with NICM, 16 had an epicardial origin on the basis of entrainment or pace-mapping. Applying the interval ECG criteria, only a significantly longer duration of the QRS and a longer shortest RS complex were observed for epicardial compared with endocardial VTs. Of note, the presence of a Q wave in lead I had the highest individual sensitivity and specificity (88%) of all tested criteria. However, because a single criterion had a limited predictive value, a 4-step algorithm that included interval and morphological criteria was proposed reaching a high sensitivity and specificity for identifying an epicardial VT SoO from the basal or lateral LV in the preselected group of patients with NICM (Figure 7).

Recently, Yokokawa et al.22 demonstrated that the accuracy of the 12-lead ECG for differentiating between endocardial and epicardial pace-map sites improved when applying a computerized algorithm compared with previous reported algorithms.

Limitations of the 12-Lead ECG to Predict an Epicardial VT SoO

The ECG criteria for identifying an epicardial LV VT SoO were derived from the analysis of pacemaps and a limited number of VTs from a population mainly comprised of patients without SHD or with NICM (Table 3). Martinek et al.23 showed that in patients with post-MI, both the interval and the morphological ECG criteria failed to distinguish an epicardial from an endocardial LV VT SoO defined as the successful ablation site. Two factors may explain this finding. The presence of typical Q waves in the VT ECGs of patients with previous MI precludes the use of morphological ECG criteria, and when present in the precordial leads, Q waves may interfere with the measurement of all interval criteria (Case 6 in the Data Supplement). Perhaps even more importantly, the VT 12-lead ECG provides information about the VT exit site from the scar border, but successful ablation is often performed at other critical parts of the re-entrant circuit. In particular, in patients with previous MI, both the presence of wall thinning and the subendocardial location of parts of the re-entry circuit may allow successful ablation of VTs with an epicardial exit site from the endocardium. Accordingly, the number of VTs with an epicardial exit site may be underestimated.

Figure 6. Determination of the maximum deflection index (MDI): the interval between the earliest ventricular activation and the maximum deflection in each precordial lead (taking the shortest interval) is divided by the QRS duration. An MDI of ≥ 55 ms had a high sensitivity and specificity to identify an epicardial ventricular tachycardia origin in patients without structural heart disease. Reprinted from Daniels et al.19 with permission of the publisher. Copyright ©2006, Wolters Kluwer Health.

Figure 7. Multistep algorithm to identify an epicardial (EPI) left ventricular (LV) ventricular tachycardia (VT) site of origin from the basal superior and lateral LV in patients with nonischemic cardiomyopathy. The cut-off values of the pseudodelta wave and maximum deflection index were modified to increase its individual predictive value. Reprinted from Vallès et al.21 with permission of the publisher. Copyright ©2010, Wolters Kluwer Health.
Piers et al. recently demonstrated that when applied to clinically documented VTs (conventionally recorded with 25 mm/s and 10 mm/mV and measured with manual calipers) from patients with NICM, neither interval nor morphological ECG criteria could differentiate between an endocardial and an epicardial VT SoO defined as successful ablation site. For induced VTs (recorded on an electrophysiological recording system and measured with electronic calipers at 100 mm/s), the interval criteria could distinguish between an endocardial and epicardial VT SoO for slow VTs but could not reliably identify an epicardial VT origin in patients with fast VTs (cycle length, \(\leq 350 \) ms) or in patients off amiodarone. The absence of a clear isoelectric interval or the overlap of the QRS complex with the previous T wave during fast VTs may hamper an accurate identification of the QRS onset, which is mandatory for the measurement of all interval criteria. However, for induced VTs, the morphological criteria seemed to be not affected by the VT cycle length or amiodarone use. The latter confirms the findings from Vallès et al., who, as previously stated, demonstrated that the presence of a Q wave in lead I had the highest individual accuracy for identifying an epicardial VT origin in patients with NICM (Figure 8).

There are limited data on the value of the 12-lead VT ECG to predict an epicardial VT origin from the RV. Bazan et al. analyzed 180 endocardial and 134 epicardial pacemaps from a group of 13 patients without SHD (7/13) and RV cardiomyopathy (8/13). No interval criterion was able to distinguish an epicardial from an endocardial RV pacemap site in this population. Again, site-specific morphological criteria seemed to be useful for identifying an epicardial RV pace-map site. However, this finding was based on only 5 successfully ablated VTs from the epicardial RV.

Table 3. Proposed Criteria to Identify an Epicardial Left Ventricular VT Site of Origin

<table>
<thead>
<tr>
<th>First Author and Year of Publication</th>
<th>Population</th>
<th>No. of Patients</th>
<th>No. of Paced Maps/VTs Analyzed</th>
<th>Criteria</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berruezo, 2004¹⁸</td>
<td>Post-MI/NICM</td>
<td>67</td>
<td>Not provided/69</td>
<td>Pseudodelta wave, (\geq 34) ms</td>
<td>83%</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intrinsicoid deflection time, (\geq 85) ms</td>
<td>87%</td>
<td>90%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shortest RS interval, (\geq 121) ms</td>
<td>76%</td>
<td>85%</td>
</tr>
<tr>
<td>Daniels, 2006¹⁹</td>
<td>Idiopathic</td>
<td>12</td>
<td>0/12</td>
<td>Maximum deflection index, (\geq 0.55)</td>
<td>100%</td>
<td>99%</td>
</tr>
<tr>
<td>Bazan, 2007²⁰</td>
<td>Idiopathic/NICM</td>
<td>28</td>
<td>636/19</td>
<td>Q wave in I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Basal superior LV</td>
<td>86%</td>
<td>81%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Apical superior LV</td>
<td>84%</td>
<td>78%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Q wave in inferior leads</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Basal inferior LV</td>
<td>74%</td>
<td>51%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Apical inferior LV</td>
<td>94%</td>
<td>61%</td>
</tr>
</tbody>
</table>

LV indicates left ventricle; MI, myocardial infarction; NICM, nonischemic cardiomyopathy; and VT, ventricular tachycardia.

Figure 8. Reported interval and morphological ECG criteria for identifying a left ventricular epicardial (EPI) ventricular tachycardia (VT) site of origin are assessed by 2 different observers for a fast (A) and a slow (B) VT. Of note, for the fast VT, the QRS onset is defined differently, affecting the measurement of all the interval criteria. CL indicates cycle length; IDT, intrinsicoid deflection time; MDI, maximum deflection index; PDW, pseudodelta wave; and SRS, shortest RS complex. Reprinted from Piers et al. with permission of the publisher. Copyright ©2014, Elsevier.
Value of the 12-Lead ECG to Predict the Underlying Substrate for VT

In patients with NICM, the VT 12-lead ECG morphology helps to predict the location and extension of the arrhythmogenic substrate, which may have implications for selecting the primary ablation approach (endocardial versus endo/epicardial) and for estimating the probability of procedural success and patient prognosis.

Piers et al17 demonstrated that 17 of 19 patients (89\%) with NICM referred for VT ablation with delayed enhancement MRI integration had 1 of 2 typical scar patterns (basal anteroseptal or inferolateral). All but 1 patient had at least 1 of 3 characteristic VT ECG morphologies, diagnostic for 1 of these 2 typical scar locations. All patients with an RBBB morphology, positive precordial concordance and inferior axis VTs or an LBBB morphology, early precordial transition (≤V3), and inferior axis VTs had an anteroseptal scar; whereas all patients with an RBBB morphology, late precordial transition, and right (superior or inferior) axis VTs had an inferolateral scar (Figure 9). The majority of ablation target sites for patients with anteroseptal scars were located in the aortic root or in the basal anteroseptal LV endocardium (Case 7 in the Data Supplement). In these patients, if ablation via the coronary sinus and its branches fails, epicardial mapping and ablation using a conventional subxiphoid approach are unlikely to be appropriate because of the presence of the overlying left atrial appendage, coronary arteries, or epicardial fat at the epicardial LV summit. On the contrary, in patients with inferolateral scars, the majority of ablation target sites could be reached from the LV epicardium. Epicardial mapping was not hampered by overlying structures like the left atrial appendage, a thick fat layer, or coronary arteries in these patients; however, radiofrequency delivery may need to be withheld if damage of the coronary arteries or the phrenic nerve cannot be excluded. Oloriz et al26 confirmed subsequently these findings in a larger cohort of patients.

As previously indicated, the VT substrate in patient with NICM is often located in the basal LV, around the valvular annuli with variable extension toward the LV apex. Of 76 patients with NICM referred for VT ablation, Frankel et al27 identified 32 (42\%) who had spontaneous or induced VTs with a morphology suggestive of an apical exit site. An apical VT morphology was defined as a VT with an LBBB morphology and late precordial transition (≥V5) to a dominant positive QRS complex or with an RBBB morphology and early precordial transition (≤V3) to a dominant negative QRS complex. Markedly, patients with apical VT morphologies had larger scar areas delineated by voltage mapping and a worse prognosis, with a higher likelihood of requiring heart transplant or LV assist devices because of advanced heart failure.

Finally, data on the value of the 12-lead ECG for predicting the underlying substrate for VTs arising from the RV are scarce. Hoffmayer et al28 compared the 12-lead ECG morphology of VTs with LBBB and inferior axis from 42 patients.

![Figure 9.](http://circep.ahajournals.org/)

\textcopyright{} 2013, Wolters Kluwer Health.
with idiopathic RV outflow tract VT and 16 with arrhythmogenic RV cardiomyopathy. The duration of the QRS in lead I ≥120 ms, earliest onset of QRS in lead V1, presence of QRS notching in at least 1 lead, and a precordial transition at V5 or later were independent predictors of arrhythmogenic RV cardiomyopathy. Using these ECG features during VT and the presence/absence of negative T waves in leads V1–V3 during sinus rhythm, the same authors constructed a risk score for arrhythmogenic RV cardiomyopathy as underlying substrate for VT with a positive predictive value of 100% and a negative PV of 91%.

Summary

Several algorithms for identifying the VT origin based on the analysis of the 12-lead VT ECG have been suggested. These algorithms have applied different definitions for VT and the presence of T-wave in leads V1–V3 during sinus rhythm, the authors constructed a risk score for arrhythmogenic RV cardiomyopathy as underlying substrate for VT with a positive predictive value of 100% and a negative PV of 91%.

Disclosures

None.

References

Key Words: catheter ablation ■ electrocardiography ■ myocardial infarction ■ tachycardia, ventricular
Twelve-Lead ECG of Ventricular Tachycardia in Structural Heart Disease
Marta de Riva, Masaya Watanabe and Katja Zeppenfeld

Circ Arrhythm Electrophysiol. 2015;8:951-962
doi: 10.1161/CIRCEP.115.002847

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circep.ahajournals.org/content/8/4/951

Data Supplement (unedited) at:
http://circep.ahajournals.org/content/suppl/2015/08/19/CIRCEP.115.002847.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Arrhythmia and Electrophysiology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Arrhythmia and Electrophysiology is online at:
http://circep.ahajournals.org//subscriptions/
SUPPLEMENTAL MATERIAL
Case 1. 72 yrs male, 12 yrs after a large anterior MI

A

VT1

Bipolar voltage map

RAO

LAO

INF

50mm/s

100mm/s

QRS onset

B

Isocronal map

-180ms or 75ms before QRS onset

-102 ms or QRS onset
Case 2. 52 yrs male, 9 yrs after anteroseptal MI

A

Mod. RAO

LV

1 2 3 4 5 6 7

Mod. SUP

B

RAO – Diastol.

RAO – Systol.

C

RAO

LAO

D

VT

I

II

III

aVR

aVL

aVF

V1

V2

V3

V4

V5

V6

50mm/s

E

RV pace map

LV pace map

1 2 3 4 5 6 7

50mm/s
Case 3. 65 yrs male, 5 yrs after small inferior MI

A

Mod.PA (bottom view)

Mod.PA

B

VT

C

50mm/s
Case 4. 69 yrs male, 17 yrs after small apical MI
Case 5. 64 yrs male, 16 yrs after large anterior MI

A

Mod. RAO

Mod. LAO

B

RAO

LAO

C

VT

Pace mapping

1 2 3 4 5 6 7 8 9 10

50 mm/s
Case 6. 73 yrs male, 16 yrs after inferoposterior MI
Epicardial ablation after endocardial failure
C
VT before Endo ABL

VT’ after Endo ABL

D
Endocardial pacemapping

E
Epicardial pacemapping
Case 7. 62 yrs male with NICM
Second endocardial ablation attempt

A

![Images of cardiac mapping](https://via.placeholder.com/150)
Case legends
Case 1

72 yrs male, 12 yrs after large anterior MI, clinical VTCL 548ms

Panel A: The clinical VT (VT1) had RBBB morphology with early precordial transition (V2) and right superior axis. The RV apex (RVa) catheter served as a reference during VT activation mapping. RVa activation is indicated by a continuous blue line. On the ECG, the QRS onset is difficult to determine. Two potential onsets (102 and 180ms before RVa) are indicated with dashed blue lines.

Electroanatomical (EA) endocardial bipolar voltage map of the LV in RAO, LAO and inferior views shows a large low voltage area in the anterior wall extending to the septum and lateral wall (voltages are color coded according to the bar).

Panel B: Activation map during VT1 (AP and inferior views) displayed as isochronal map. Black tags indicate LV sites activated 180ms before the RVa, which are located within the scar based on voltage mapping. Blue tags indicate LV sites activated 102ms before the RVa, which coincides with the most obvious QRS onset, and are located in normal voltage areas. These sites were considered as the probable VT exit site. However, entrainment mapping at these locations showed fusion and a post pacing interval (PPI) exceeding VTCL>70ms. During detailed endocardial mapping, no mid-diastolic activity or isthmus sites based on entrainment mapping could be identified. After endocardial ablation failure, an epicardial ablation approach was scheduled. The endocardial propagation map during VT1 is provided in online video 1.

At the beginning of the second procedure, a different slow VT (VT2, panel C) with LBBB morphology, V4 transition and left inferior axis was induced. The RVa timing is indicated by a continuous blue line. The QRS onset is indicated by a dashed blue line. The best endocardial pace-map site for VT2 at the basoseptal border of the scar is indicated by a yellow tag (panel D, top). During activation mapping (panel D, bottom) activation of this site coincided with the QRS onset (indicated by a blue tag). However, entrainment mapping resulted in fusion with a PPI exceeding VTCL>70ms. The endocardial propagation map during VT2 is provided in online video 2. Limited epicardial activation mapping was
performed during VT2 (mapped area indicated by the dashed white line) (panel E). The direction of the activation wave front is indicated by a white arrow. The reentry circuit entrance site confirmed by entrainment mapping (indicated by a green dot) was found in the apicoseptal epicardial LV. Please note the very long electrogram-to-QRS onset interval at this site. With the first RF application at this position, VT2 slowed. The VT isthmus site (indicated by a white dot and confirmed by entrainment) was localized slightly superior. With a second RF application, VT terminated. The presumed reentry exit site is indicated by a yellow dot. Please note the long distance to the exit site from the scar, where the best endocardial pace-map was obtained.

The VT morphology is mainly dependent on the site(s) where the wavefront emerges from the scar border to activate the normal myocardium. If the reentry exit site and the exit site from the scar do not correspond, the accuracy of the 12-lead ECG to predict the VT origin is limited and may direct to wrong target areas.

Case 2

52 yrs male, 9 yrs after anterior MI, clinical VTCL 352ms

Panel A. Electroanatomical (EA) endocardial bipolar voltage map of the LV in a modified RAO view (left), and of the LV and RV in a modified superior view (right). Voltages are color coded according to the bar. Yellow tags indicate pacing sites around the EA scar; the numbers correspond to the numbers of the paced 12 lead ECG morphologies (Panel E). Best pace-map site and site of VT termination are indicated. Panel B: LV angiogram during diastole and systole showing a small apical aneurysm corresponding with the dense apical scar on EAM. Panel C: fluoroscopic views of the LV in RAO and LAO. Note the calcification of the aneurysm (white arrows). The position of the ablation catheter (red arrows) corresponds to the green tag, panel A.
The clinical VT (Panel D) had LBBB morphology with late transition and left superior axis and a predicted apicoseptal SoO/exit site according to Miller⁴, Kuchar⁵ and Segal⁶.

However, pacing from the LV could not reproduce the VT morphology. The best pace-map was recorded during pacing at the RV septum (panel A,E). Limited entrainment mapping (not shown) could confirm the apical LV as outer loop and the RV apical septum as reentry circuit exit site (RF at this site abolished VT) which coincided with the RV scar border zone. The VT reentry circuit involved the septum and perhaps the subepicardial LV. Please note the changes of the paced QRS from left superior to right superior axis with only little changes in the precordial lead transition if pacing sites move from septal to anterolateral. These small changes may be explained by the limited lateral and anterior scar extension.

In addition to prior algorithms it is important to consider the RV as VT SoO.

Case 3

65 yrs male, 5 yrs after small inferior MI, clinical VTCL 320ms

Panel A. EA endocardial bipolar voltage map of the LV in a modified posterior view (PA) rotated to the bottom (left) and standard PA (right) view (color coding according to the bar). Tags represent catheter positions as indicated; numbers correspond to the numbers of the paced 12 lead ECG morphologies (Panel C).

The clinical VT (panel B) had RBBB morphology with late transition (V6) and left superior axis and a predicted inferobasal SoO by Miller⁴ and Segal⁶. Despite the small EA scar the paced QRS morphology changed from LBBB with early transition (V2) and left superior axis at pacing site 2 (inferoseptal) to RBBB with transition at V3 and left superior axis at site 3 (basal inferior) and to RBBB with late transition (V5) and left superior axis at site 5. Site 5 was the best albeit not perfect pace-map site.
During pacing within this small area, the propagation direction changed from septal, to apical to lateral (indicated by the blue arrows). Based on the careful analysis of the paced-ECG the assumed activation during VT occurred in an apical to basal direction followed by two wave fronts in a septal (towards 2) and lateral (towards 5) direction resulting in a “fused” QRS VT morphology not reproducible by pacing at either site. Indeed, ablation at the presumed isthmus site (and predicted site of origin), indicated by the white tag, abolished VT.

Case 4

69 yrs male, 17 years after small apical MI, clinical VTCL 375ms

Panel A. EA endocardial bipolar voltage map of the LV in modified anterior (AP), LAO and inferior views (color coded according to the bar) showing a very small dense apicoseptal scar with only little lateral involvement. Grey tags indicate sites with no capture at high output pacing.

The clinical VT (panel C) had RBBB morphology with early precordial transition and right superior axis and a predicted posterior-apical SoO by Segal\(^6\) (not predictable by Miller\(^4\) and Kuchar\(^5\)).

The best pace-map was obtained at site 5 (corresponding catheter position using a transeptal approach on fluoroscopy provided in panel B, red arrows) and ablation adjacent to this point successfully terminated VT.

Please note that pacing at all scar border zone sites resulted in a RBBB morphology with early transition and a superior axis similar to VT (R/S transition is indicated as blue lines). The superior axis can be explained by an inferior-anterior activation of the normal myocardium from all scar border sites. However, subtle QRS axis changes from RS to LS as pacing sites move from right to left (best visible in lead aVL) can direct to the VT scar exit in small apical scars.
Case 5

64 yrs male, 16 yrs after large anterior MI, clinical VTCL 440ms

Panel A. EA endocardial bipolar voltage map of the LV in modified RAO and LAO views (color coded according to the bar, grey tags indicate sites with no capture at high output pacing). Tags represent catheter positions as indicated; numbers correspond to the numbers of the paced 12 lead ECG morphologies (Panel C).

The clinical VT (panel C) had RBBB morphology with positive concordance and left inferior axis, which was rarely observed in Miller’s⁴ report (2 out of 78 RBBB VT from anterior infarctions) but had a predictable anterobasal SoO according to Kuchar⁵ and Segal⁶. The best pace-map was obtained at the basal anterior EA scar border (site 2). Please note the abrupt change in the paced QRS morphology from a left inferior axis to a left superior axis with early precordial transition if pacing moved from the basoseptal EA scar border zone (site 1, corresponding catheter position on fluoroscopy, panel B, red arrows) to the mid-septal (site 3) border zone. The EA scar extension (dashed line, panel A) between these two sites may lead to different propagation wave fronts and abrupt changes in the paced QRS morphology. Please also note that pacing at mid anteroseptal sites (point 3 and 4) resulted in a RBBB morphology with early transition with left superior axis while pacing at mid lateral sites (point 9 and 10) had later transition and less superior axis. Unexpected ECG morphologies are likely related to the variation in scar distribution after anterior MI and may explain the limited predictive value of prior algorithms.

Case 6

73 yrs male, 16 years after inferolateral MI, epicardial ablation after endocardial ablation failure, clinical VTCL 630ms

Panel A. EA endocardial bipolar voltage map of the LV in modified left lateral and posterior views (color coded according to the bar, grey tags indicate sites with no capture at high output pacing).
Tags represent catheter positions as indicated; position of the best endocardial pace-map on fluoroscopy in RAO and LAO view (red arrows). Numbers correspond to the numbers of the paced 12 lead ECG morphologies (Panel D).

Panel B. EA epicardial bipolar voltage map of the LV in the same modified left lateral and posterior views as panel A (color coded according to the bar, please note that for the epicardium, a bipolar cut off <1.8mV for abnormal voltage is applied14, grey tags indicate sites with no capture at high output pacing). Tags represent catheter positions as indicated; position of the best epicardial pace-map after endocardial ablation failure on fluoroscopy in RAO and LAO view (red arrows). Numbers correspond to the numbers of the paced 12 lead ECG morphologies (Panel E).

The clinical VT had RBBB morphology, positive concordance, inferior axis, not classifiable by Miller4 and with a predicted mid to basal anterior SoO according to Kuchar5 and Segal6 (panel C, left). The best, although not perfect endocardial pace-map was obtained at endocardial site 1 (panel A, D).

After RF at the endocardium a similar VT remained inducible (VT') with slightly shorter CL and subtle changes of the initial part of the VT QRS (panel C, right) suggesting an epicardial exit site.

ECG criteria for a potential epicardial site of origin (sweep speed 100mm/sec) were applied; Pseudodelta wave (PDW \geq 34ms), Intrinsicoid deflection time inV2 (IDT \geq 85), Shortest RS complex (SRS \geq 121ms), Maximum deflection index (MDI \geq 0.45). Despite a similar morphology, after endocardial ablation VT' QRS was broader (251ms vs. 387ms after) and ECG parameters were strongly suggestive for an epicardial origin; PDW 65ms vs 198ms, IDT 112ms vs 252ms, SRS 182ms vs 322ms and MDI 0.39 vs 0.59 in VT before and after endocardial ablation. Notably, morphology criteria did not differentiate between endo and epicardial pacing sites (Q-waves), perhaps because of the transmural lateral scar.

During epicardial mapping, the best pace-map for VT' could be obtained at epicardial site 1 (epicardial catheter position on fluoroscopy opposite (slightly lateral) to the endocardial catheter position). With the catheter in place VT was re-induced and terminated after 6 seconds RF. The
change in QRS morphology after endocardial ablation may be explained by a shift in exit site from the endocardium to the epicardium.

Voltage mapping showed a remarkable anterior scar extension, which explains the unusual 12 lead VT QRS morphology in a patient after inferolateral MI.

Please also note the abrupt change in the precordial leads between pacing site 4 and 5 from a RS in V1, negative concordant in the precordial leads to a RBBB, late transition morphology. These changes may be explained by the scar extension and transmurality as derived from endo and epicardial voltage mapping resulting in different wavefront propagation and QRS morphologies.

Case 7

62 yrs male, NICM, clinical VTCL 405ms

Panel A. EA endocardial bipolar voltage map of the LV in modified RAO and LAO views, the aorta (Ao) and the RV (modified RAO and posterior view[LV transparent]) (color coded according to the bar, grey tags indicate sites with no capture at high output pacing). Tags represent catheter positions as indicated; numbers correspond to the numbers of the paced 12 lead ECG morphologies (Panel D).

Panel B. EA epicardial bipolar voltage map in a modified LAO view (left) and integration of the CT derived anatomy of the aorta, left atrium and coronary arteries (LAD, left anterior descending coronary artery) with the endocardial EA maps (right, same modified LAO view).

The endocardial EA scar was confined to the basal anteroseptal LV, which is one of the typical scar patterns observed in NICM patients. Image integration demonstrates that this particular area is not reachable from the epicardium. The epicardial low voltage area (ventricular electrograms annotated) is covered by the large left atrial appendage (LAA) and the fat overlying the LAD at the interventricular groove.
The clinical VT (Panel C, 50mm/sec [left]; 100mm/sec [right]) had a RBBB morphology with positive concordance and right inferior axis, suggesting an origin from the anterobasal LV, so called ‘LV summit’. ECG parameters were indicative of an epicardial SoO (PDW 135ms (≥34ms), IDT 275ms (≥ 85), SRS 270ms (≥ 121ms) and MDI 0.56 (≥ 0.45)). The best although not perfect pace-map (no prolonged initial slurring in precordial lead V3) was obtained just beneath the aortic valve (panel D, endocardial site 7). Ablation at the endocardial LV basal anterolateral region could modify but not abolish the VT. Pace mapping neither at RV, CS or aortic cusp sites could resemble VT QRS. Although epicardial mapping was performed, neither pace-mapping nor activation mapping could identify a VT related site. Although no complication related to the epicardial access occurred in this patient, the 12 lead VT ECG morphology combined with the information from image integration after endocardial substrate mapping can predict a VT substrate not accessible from the epicardium.