To the Editor:

In their editorial, “Matter of Fat: Are Lipids Antiarrhythmic?” Drs Wan and Boyden’s comment on our article, “Dyscholesterolemia protects against ischemia-induced ventricular arrhythmias.” In our article, we have presented evidence that increased sarcolemmal cholesterol content provides an antiarrhythmic effect mediated through an increased Ca²⁺ current and a resulting prolongation of the ventricular action potential.

In their editorial comment, the authors unduly attribute some statements to us and we feel the need to correct the authors on some of these points.

First, Wan and Boyden state that we suggest that the observed antiarrhythmic effect during acute myocardial infarction is akin to that of a diet rich in fish oil. This is not correct. Contrary to hypercholesterolemia (which causes action potential prolongation and decreased ventricular fibrillation susceptibility), a diet rich in fish oil leads to shortening of the ventricular action potential and to increased susceptibility to ventricular fibrillation during acute myocardial infarction.³

Second, the authors mention that no effects on the sodium current (I_Na) were described. This is not correct. Figure 2C contains data of the upstroke velocity of the action potential. As we state in the Discussion: “Action potential upstroke velocity is an adequate measure of I_Na.” This modest reduction of current apparently did not lead to a significant decrease in conduction velocity and did not offset the antiarrhythmic effect associated with the action potential prolongation.

Third, the authors maintain that we “propose that patients with dyslipidemia may be protected from... arrhythmias” and that “The bigger question is whether the findings...should be translated to the clinic.” The authors seem to have read the article as yet another mouse clinic.” The authors seem to have read the article as yet another mouse model looking for a clinical application but have failed to appreciate that the described antiarrhythmic mechanism explains how the described antiarrhythmic effect depends on the underlying arrhythmia mechanism.

Correspondence

Antonius Baartscheer, PhD
Department of Clinical and Experimental Cardiology
Academic Medical Center
University of Amsterdam
Amsterdam, The Netherlands

Ruben Coronel, MD, PhD
Department of Clinical and Experimental Cardiology
Academic Medical Center
University of Amsterdam
Amsterdam, The Netherlands

L’Institut du Rythmologie et Modélisation Cardiaque (LIRYC)
University of Bordeaux
Bordeaux, France

References

© 2016 American Heart Association, Inc.
Circ Arrhythm Electrophysiol is available at http://circep.ahajournals.org

DOI: 10.1161/CIRCEP.116.003933
Antonius Baartscheer, Marieke W. Veldkamp and Ruben Coronel

Circ Arrhythm Electrophysiol. 2016;9:e003933
doi: 10.1161/CIRCEP.116.003933

Circulation: Arrhythmia and Electrophysiology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3149. Online ISSN: 1941-3084

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circcep.ahajournals.org/content/9/3/e003933

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Arrhythmia and Electrophysiology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Arrhythmia and Electrophysiology is online at:
http://circcep.ahajournals.org//subscriptions/