Sudden cardiac death secondary to drug-induced long QT syndrome is a major safety concern and has led to withdrawal of several high-profile drugs, such as cisapride and astemizole, from the market. Although these drugs have different chemical structures, they all block the rapid delayed rectifier K+ current (I_{Kr}) with high potency. The hERG channel (Kv11.1) encoded by the hERG gene is responsible for this current. This channel has a high affinity for wide spectrum of compounds compared with other ion channels mainly because of the presence of unique aromatic amino acids in the S6 domain of hERG.1 This in turn has created a major challenge for development of new drugs.2 In fact, it is now a routine practice in the pharmaceutical industry to screen compounds for their ability to block hERG early in preclinical safety assessments according to the Food and Drug Administration guidelines. This in turn leads to elimination of a large number of potentially beneficial compounds from chemical libraries.

See Article by Yu et al

Interestingly, screening libraries of compounds for their blocking effect on hERG has resulted in discovery of many hERG activators/modulators. These drugs increase current flow through hERG via various mechanisms that include slowing of deactivation, removal of inactivation, and facilitation of activation.3 In theory, hERG channel activators could have the potential to normalize the QT interval in acquired or congenital long QT syndromes.4 In fact, the proarrhythmic effects of dofetilide can be reversed, in vitro, by application of hERG channel activators.5 The drawback in the use of hERG blockers, LUF7244 did not shorten action potential duration.6 Surprisingly, in the absence of early after depolarization. Interestingly, the authors showcase a clever mean to assay the effect of LUF7244 on hERG channel blockers in a physiological setting by using cultured neonatal rat ventricular myocytes. They used high-resolution optical mapping to record action potentials from cells grown to confluence. With this technique, LUF7244 reversed the prolonging effect of astemizole on action potential duration and prevented induction of early after depolarization. Surprisingly, in the absence of hERG blockers, LUF7244 did not shorten action potential duration.

Lack of shortening of action potential duration by LUF7244 was not examined further in their article. This could be because of off-target effect of LUF7244 on other ion channels. For example, NS1643, a known activator of hERG, blocks KCNQ1 current, which is responsible for slow delayed rectifier K+ current (I_{Ks}).8 If the ratio of blocking activity at hERG and KCNQ1 balance each other out, then action potential duration will not change significantly, which could be a beneficial feature as it would prevent short QT syndrome. Therefore, it is important to assess the effect of LUF7244 and future hERG activators on a range of ion channels to ensure the absence of unwanted off-target effect.

This article raises 2 interesting questions. First, can hERG modulators/activators be used in combination with drugs that are known to block hERG to mitigate the long QT side effect? This has an immense clinical prospect because it will allow for reintroduction of previously successful drugs and can potentially accelerate drug discovery and development. A significant number of chemicals are eliminated from libraries during drug discovery because of their affinity to hERG. Therefore, by having the ability to counteract this effect, there...
will be more compounds available to screen for use in variety of diseases. In the future, through mapping the binding site and mechanism of action of various activators, more potent activators will surely be developed.

The second question is can the assays developed by Yu et al\(^8\) be used as a high throughput screening strategy? Although patch clamp remains the gold standard in studying the biophysical properties of channels and determining the details by which drugs interact with them, it is technically challenging with low throughput. Here, the authors demonstrate the use of cultured neonatal rat myocytes and optical mapping to assess for action potential duration. Neonatal cardiomyocytes have the ability to grow, divide, and differentiate; therefore, they can be used for long-term cell culture applications. Consequently, combination of these cells and high-resolution optical mapping can potentially be expanded to a high throughput screening modality. The advantage of this technique over existing assays is that it is a physiological screen, capable of determining the effect of a compound on the action potential duration and potential for evoking early after depolarization. Even so, patch-clamp studies on the action potential duration and potential for evoking early after depolarization. Enhanced description of its electrophysiological effects seems critical. Site-directed mutagenesis may provide insights as to the topology of its allosteric-binding site on the hERG (KCNH2) channel. Enhanced description of its electrophysiological effects seems an important next step.

A recent article by Yu et al\(^9\) proposes interesting potential mechanism(s) for increased dissociation of \(^3\)H-dofetilide and astemizole from their binding sites. Further studies of this interest may provide insights as to the topology of its allosteric-binding site on the hERG (KCNH2) channel. Enhanced description of its electrophysiological effects seems critical. Site-directed mutagenesis may provide insights as to the topology of its allosteric-binding site on the hERG (KCNH2) channel. Enhanced description of its electrophysiological effects seems an important next step.

References

Key Words: editorsials ■ action potentials ■ long QT syndrome
Dissociative States: hERG Channel (Kv11.1) Modulators That Enhance Dissociation of Drugs From Their Blocking Receptor: Potential New Therapeutic Drugs
Saman Rezazadeh and Henry Duff

Circ Arrhythm Electrophysiol. 2016;9:
doi: 10.1161/CIRCEP.116.004003

Circulation: Arrhythmia and Electrophysiology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3149. Online ISSN: 1941-3084

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circep.ahajournals.org/content/9/4/e004003

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation: Arrhythmia and Electrophysiology_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation: Arrhythmia and Electrophysiology_ is online at:
http://circep.ahajournals.org/subscriptions/