Prophylactic Radiofrequency Ablation in Asymptomatic Wolff-Parkinson-White Patients Is Not Yet a Good Strategy: A Decision Analysis

Running title: Chevalier et al.; Ablation in Asymptomatic Wolff-Parkinson-White Patients

Philippe Chevalier, MD, PhD1,2; France Cadi, MD3; Alina Scridon, MD1; Nicolas Girerd, MD, MSc1; Theodora Bejan-Angoulvan, MD, PhD4; Elodie Morel, PhD2; Isabelle Jaisson Hot, PhD5; Sylvie Di Filippo, MD6, PhD; Christelle Ganne5; Cyril Colin, MD5

1Rhythmology unit, 6Pediatric Cardiology unit, Louis Pradel Cardiology Hospital, Bron, Hospices Civils de Lyon; 2Lyon Reference Center for inherited Arrhythmias, Louis Pradel Cardiovascular Hospital; 3Hospices Civils de Lyon, Lyon; 4Clinical pharmacology unit, Bretonneau Hospital, Tours; 5Medical Information Center, Hospices civils de Lyon, France;

Corresponding author:
Philippe Chevalier, MD, PhD
Service de Rythmologie, Hôpital Cardiologique
28 avenue du doyen Lépine
69677 Lyon cedex 03
France
Tel: +33 (0) 472.68.49.46
Fax: +33 (0) 472.35.73.41
E-mail: philippe.chevalier@chu-lyon.fr

Journal Subject Codes: [22] Ablation/ICD/surgery; [100] Health policy and outcome research
Abstract:

Background - Therapeutic management of asymptomatic patients with a Wolff-Parkinson-White (WPW) pattern is controversial. We compared the risk-benefit ratios between prophylactic radio frequency (RF) ablation and no treatment in asymptomatic WPW patients.

Methods and Results - Decision analysis software was used to construct a risk-benefit decision tree. The target population consisted of 20–40-year old asymptomatic WPW patients without structural fatal heart disease or a family history of sudden cardiac death. Baseline estimates of sudden death and RF ablation complication rates were obtained from the literature, an empirical data survey, and expert opinion. The outcome measure was death within 10 years. Sensitivity analyses determined the variables that significantly impacted the decision to ablate or not. Threshold analyses evaluated the effects of key variables and the optimum policy. At baseline, the decision to ablate resulted in a reduction of mortality risk of 8.8 patients for 1000 patients compared with abstention. It is necessary to treat 112 asymptomatic WPW patients to save one life over ten years. Sensitivity analysis showed that 3 variables significantly impacted the decision to ablate: (1) complication of RF ablation; (2) success of RF ablation; and (3) sudden death in asymptomatic WPW patients.

Conclusions - This study provides a decision aid for treating asymptomatic patients with the WPW electrocardiogram pattern. Using the model and the population we tested, prophylactic catheter ablation is not yet ready for widespread clinical use.

Key words: arrhythmia (Heart Rhythm Disorders); catheter ablation; sudden death; Wolff-Parkinson-White syndrome; decision analysis
Introduction

Wolff-Parkinson-White (WPW) syndrome has a prevalence of 0.9% to 3% in the general population.1,2 Most patients remain asymptomatic throughout their lives; however, in about 0.6% of WPW patients, there is a risk of sudden death.3,4,5 This risk of sudden death is attributed to the development of AV reciprocating tachycardia (AVRT) that deteriorates to atrial fibrillation (AF) and finally to ventricular fibrillation.6-8 Short refractory periods of the accessory pathway (AP) could increase the risk of this fatal outcome9.

According to the current American College of Cardiology and European Society of Cardiology guidelines, the use of the radiofrequency (RF) catheter ablation to manage asymptomatic WPW patients should be restricted to those with high-risk occupations, including professional athletes.10 Previously, a reduced risk of a patient becoming symptomatic following RF catheter ablation was reported in high-risk children and adults.11,12 Despite the high success rate (~90%) of RF catheter ablation, some problems are associated with its implementation. RF catheter ablation is an invasive technique that could lead to several technical complications such as thromboembolism, infection, bleeding, cardiac perforation with or without cardiac tamponade, and new arrhythmias. In some cases, the position of the AP affects the risk of complications. Hence, the use of this technique may not be always advisable.9 Consensual risk stratification is best analyzed by electrophysiologic testing; however, the screening process of an entire population itself is not economically feasible.6,9 Furthermore, RF catheter ablation is a complicated technique, and the ability of electrophysiologists in general to safely carry out this technique is highly questionable.9

We conducted a survey in France in 2004 using responses from 282 cardiac rhythm specialists. It was concluded that no consensus has been reached on the management of
asymptomatic patients. Only 43% of clinicians performed invasive tests and only 50% of them systemically ablated the AP. The information currently available does not indicate the best strategy to adopt for managing asymptomatic WPW patients (unpublished results). Because the benefit-risk ratio of abstention to ablation has never been quantified, we decided to use a decision analysis mode to resolve this question. This model is a useful tool for determining the validity of certain clinical outcomes. It also allows for sensitivity analysis with combinations of different variables for the condition that can be analyzed over a range of plausible values. In our study, the outcome of the decision analysis model was measured as a reduction in the risk of death using two management strategies; RF catheter ablation and abstention. With this analysis, we hope to address some compelling issues that could provide better judgment about the use of RF catheter ablation in asymptomatic WPW patients.

Methods

Decision-tree sensitivity analysis was performed to compare two management strategies in patients with permanent pre-excitation: abstention (i.e., receiving no treatment) and radiofrequency ablation of the AP. The decision analysis was performed using TreeAge DATA pro decision analysis software.

Study Population and Data Source

The study population consisted of patients who were between 20 and 40 years of age, had permanent ventricular pre-excitation on a standard resting ECG, were asymptomatic, did not experience structural heart disease, and had no familial history of sudden death. To estimate the probabilities for our model, we used data obtained from a literature review and expert opinions.

Fifty articles were selected through electronic databases such as MEDLINE, EMBASE,
Current Contents, and PubMed, and another 40 articles were selected through a manual search.

We contacted 4 national experts known for their work in WPW syndrome and who had over 10 years of experience in ablation techniques. The data obtained from these experts included the number of RF catheter ablations performed each year over the past 10 years at their respective centers, success and recurrence rates of RF catheter ablations, the rates and types of complications of RF catheter ablation, and an assessment of the risk of death at the time of the procedure. The mean of the values obtained from the experts was calculated and weighed according to the sample size of each.

Structural Components of the Decision Tree

For the purpose of setting up the decision tree, an arbitrary efficacy scale was used. The study population did not undergo an initial stratification for the risk of arrhythmic events, and the study did not account for the risk of recurrence after the initial success of RF catheter ablation. The study did not take cryotherapy into consideration, although it was employed to treat ventricular pre-excitation during the study period.

The study was scheduled to last for 10 years. The rationale for choosing a 10-year duration was that severe complications owing to radiofrequency ablation jeopardize the vital prognosis, especially in the short and medium terms. The criterion of efficacy used was the outcome for the final health status and was scored as “survival” = 1 or "death" = 0. For the safety analysis, the following serious complications were included: lesional complete AV block, tamponade requiring emergency surgical drainage, massive cerebrovascular attack, and massive pulmonary embolism. Each serious complication could lead to the death of the patient.

Decision Tree

The decision-tree consisted of 3 nodes linked by branches (Figure 1, online data supplement).
The decision tree always started with a decision node. This represented the choice amongst the two options; abstention or RF catheter ablation. The random nodes consisted of exhaustive and mutually exclusive events, and each random node had the same number of branches. Probabilities (Table 1) were linked to the random nodes, using objective data from the literature or from expert opinion. The terminal nodes correspond to the consequences of each decisional route. Each terminal node had a numerical value called the "utility" (survival = 1, death = 0).

The choice of the probabilities of each event occurring was a fundamental stage in producing the model. We tried to use the closest value for each probability for each event from the literature. We adopted the expert opinion value when there was no data available.

The final stage was to weigh the efficacy using the probability of random events that occurred for each strategy. For the values of experts, we calculated the average rate by the weighted sample size of patients followed by the experts. The expected efficacy of a strategy was the sum of the products of the probabilities for the efficacy measurements of each branch. The difference observed between the efficacies expected for each strategy helped in making a decision.

Sensitivity analysis

After analyzing all the probabilities from p1 to p20, a Tornado diagram identified the probabilities that were most likely to influence the results of the decision analysis. Sensitivity analysis was carried out by examining the relative influence of these probabilities on the expected results. The sensitivity analysis assessed the effect of inaccuracy or alteration in the key variables, and determined the optimal treatment strategy under diverse conditions.
Results

Expected Efficacy

Using the decision analysis, the expected efficacy of the two strategies was calculated. The expected efficacy of RF catheter ablation was 0.9989261 while whereas that of abstention was 0.9900449. The RF catheter ablation strategy resulted in a 8.88/1000 patients reduction in mortality in comparison with the abstention strategy. Thus, the results suggest that one out of 112 (1000/8.88) patients treated would have a reduction in the risk of death within 10 years.

Tornado Diagram

The variation interval of all the probabilities was calculated using sensitivity analysis (Table 1). The Tornado diagram (Figure 2, online data supplement) identified 3 probabilities that were likely to influence the results of the decision analysis; namely, the rate of serious complications produced by RF ablation (p5), the rate of success for RF ablation (p2), and the rate of sudden death due to the presence of ventricular pre-excitation per patient per year (p1).

Sensitivity Analysis

Results of the sensitivity analysis conducted on the 3 variables influencing the decision model are shown in Figure 1a – 1b – 1c. The analysis revealed that RF catheter ablation was more suitable than abstention if the success rate of radiofrequency (p2) was at least 0.1 (10%), the rate of serious complications was no more than 5% (0.05), and if there was an increased risk of sudden death due to the presence of ventricular pre-excitation.

Trivariate Sensitivity Analysis

Trivariate sensitivity analysis was conducted by varying all 3 variables simultaneously (Figures 2a and 2b). When p1 and p2 varied simultaneously and the value of p5 was defined as zero, RF catheter ablation was preferred. When the probability interval between p1 and p2 was varied
simultaneously, and the value of p5 was defined as 0.003 (value used in the decision tree), the results were similar to those obtained from bivariate analysis of p1 and p2. Thus, the sensitivity analysis still favored RF catheter ablation, indicating that p5 did not influence our decision analysis. When the probability interval between p1 and p2 was varied simultaneously, and the risk of serious complications was equal to that given by the Multi-centre European Radiofrequency Survey (MERFS) study13 (0.022), the results demonstrated that if the risk of sudden death was equal to that defined in the decision tree (1/1000 patients/year), abstention was the best strategy, irrespective of the success rate of RF catheter ablation.

Discussion

The main result of our study is that the expected efficacy of radiofrequency ablation in asymptomatic WPW patients is weak. We found that 112 patients had to be treated for one patient to have a reduced risk of death at 3 years. This in contrast with the findings of Pappone et al., who found that prophylactic AP ablation markedly reduced the frequency of arrhythmic events in asymptomatic patients with WPW syndrome.6

Sudden death in WPW patients is the primary rationale for using RF catheter ablation in the management of asymptomatic WPW patients. RF catheter ablation is used with great success in reducing the risk of arrhythmias by \textasciitilde92\%, and increases event-free survival in asymptomatic patients.12 However, the decision to ablate is not simple owing to multiple factors that include the cost of the screening process and the complications of invasive techniques. Prospective complications that may arise owing to the procedure can often outweigh the benefits.

A combination of inducible AVRT and short refractory interval in AF, as observed via electrophysiological testing, provides the best indication for ablation.14 However, in many WPW patients such characterization is not evident. In fact, the predictive value of invasive
electrophysiological testing is too low to justify its use in the risk analysis of asymptomatic WPW patients.19, 20 Hence, the use of prophylactic RF catheter ablation in low-risk patients is not warranted. In light of these opposing findings, it is difficult to make a strong recommendation for the best treatment approach. The decision analysis model is intended to shed light on the benefit/risk ratio of the RF catheter ablation technique. This will aid clinicians in making better judgments for asymptomatic WPW cases.

Serious complications caused by ablation procedures that could cause death occur immediately or within the first 3 years. Hence, the study was scheduled to last for 3 years in order to increase its clinical validity. We considered the risk of sudden death as the primary outcome. A homogeneous population of patients aged 20–40 years was considered in order to minimize bias in the risk of sudden death.

Sensitivity analysis conducted using 3 variables concluded that ablation was advantageous over abstention at certain thresholds. A success rate superior to 20\% (currently estimated at 95\%), a rate of serious complications inferior to 1\% (currently estimated at 3/1,000), and a risk of sudden death of nearly zero is sufficient to justify the ablation option. Indeed, ablation had superior benefits when there was an increased risk of sudden death due to ventricular pre-excitation. Notably, the clinical reality is often far from the decision thresholds. The possible imprecise estimate of p_1, therefore, has no repercussions since a risk of nearly zero is enough to favor the radiofrequency ablation strategy. The decision tree was built to help the physician in the decision-making process. With the formulation in number of the differences between strategies, the information transmitted to the patient can be improved. Finally, only the patient can judge whether he or she prefers one or the other of the following situations: (1) accepting a risk of sudden death at 1/1,000 patient-years and an approximately 30\% risk of
becoming symptomatic without risking the need for a cardiac stimulator; (2) accepting a risk of 1.5/1,000 of needing a cardiac stimulator with a 95% chance of the risk of sudden death and of becoming symptomatic disappearing.

Our findings remain robust over a wide range of assumptions for clinical inputs in sensitivity analysis. As determined by trivariate sensitivity analysis, when the probability of serious complications was 0.022 (as determined by the MERFS study13), the risk of sudden death was 1/1000 patients/year. In this case, abstention was the best strategy. RF catheter ablation with a success rate of 0.95 can be considered superior only when the risk of sudden death is at least 1.5/1000 patients/year. On the basis of these results, we conclude that patient risk evaluation is a greater determinant of the benefits of RF ablation. RF catheter ablation is not the best alternative for clinical use in the overall population.

Limitations

Our model does not take the risk of complete AV block into account well, which is the most frequent serious complication (p12 = 0.5). This difficulty can be explained by the low mortality rate owing to short and long-term complete AV block (p11 = 0.0002 and p16 = 0.0001, respectively). In order to improve our model, it would be of interest to choose a usefulness scale that takes quality of life into account. However, available data seems insufficient to perform an analysis solely focused on quality of life after AP ablation. Consequently, we preferred to focus on survival which is an unquestionable endpoint. The greatest difficulty concerns the estimate of short and long-term death rates for each complication. The retained values influenced our model since we used an arbitrary scale which assigns "0" to "death" and "1" to "survival". For this reason, the most frequent but seldom deadly-serious complication, complete AV block, is poorly taken into account by this model. In order to avoid underestimating the risks linked with
complications, it is likely that we were slightly pessimistic vis-à-vis the outcomes of our patients by using, in particular, the figures reported in the literature for pulmonary embolism and cerebral vascular accidents. However, it is probable that the risks of dying of pulmonary embolism, a cerebral vascular accident, or even a tamponade in the short term are lower if the patient is hospitalized than if the patient is at home.

Our decision analysis model utilized data from asymptomatic adult patients only. Further decision analysis models that could provide valuable results include the use of cryotherapy as an alternative to RF ablation, medico-economic evaluations, and the benefits/risks of ablation in children. An arbitrary scale for efficacy that provides a better understanding of the quality of life instead of overall mortality data could be more useful.

We mainly used French experts’ opinion and unpublished data to estimate sudden death and complication of RF ablation rates. This national expertise could provide different data than the worldwide experience. Besides, as the centers’ data were given in a non-anonymous way, we can presume that the experts had a conflict of interest. As the complication percentage is a judgment criterion for the quality of care of centers performing catheter ablation, the experts might have underestimated it. However, it would have been virtually impossible to rely solely on published data.

Conclusions
We found that the expected benefit of RF ablation in asymptomatic WPW patient is limited. A more comprehensive approach would be a multicenter, prospective, randomized study with long-term follow-up. This study will enable a better stratification of patients with the risk of sudden death as well as the significant benefits of ablation. However, such a randomized trial would be very difficult to perform. Considering all the currently available information, we propose
stratification of patients based on the risk of sudden death. Furthermore, the 1995 guidelines for management of asymptomatic WPW patients could be revised to indicate use of ablation in patients categorized as high-risk after electrophysiological analysis.

Conflict of Interest Disclosures: None.

References:

Table 1. Probabilities of Random Events Occurring in the Model.

<table>
<thead>
<tr>
<th>Events</th>
<th>Probability of the event</th>
<th>Probability of the event</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS/ WPW</td>
<td>p1</td>
<td>0.001 (8)</td>
<td>0.001</td>
<td>0.001</td>
<td>0.0–0.1</td>
<td></td>
</tr>
<tr>
<td>RF success</td>
<td>p2</td>
<td>0.95 (14)</td>
<td>0.95</td>
<td>0.95</td>
<td>0–1</td>
<td></td>
</tr>
<tr>
<td>No complications</td>
<td>p3</td>
<td>0.956 (13)</td>
<td>0.996</td>
<td>0.996</td>
<td>0.7–0.997</td>
<td></td>
</tr>
<tr>
<td>Non–serious complications</td>
<td>p4</td>
<td>0.0216 (13)</td>
<td>0.001</td>
<td>0.001</td>
<td>0–0.005</td>
<td></td>
</tr>
<tr>
<td>Serious complications</td>
<td>p5</td>
<td>0.022 (13)</td>
<td>0.003</td>
<td>0.003</td>
<td>0–0.1</td>
<td></td>
</tr>
<tr>
<td>Complete AV block</td>
<td>p6</td>
<td>0.28 (13)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.28–0.6</td>
<td></td>
</tr>
<tr>
<td>Tamponade</td>
<td>p7</td>
<td>0.32 (13)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.2–0.4</td>
<td></td>
</tr>
<tr>
<td>CVA</td>
<td>p8</td>
<td>0.06 (13)</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0–0.06</td>
<td></td>
</tr>
<tr>
<td>PE</td>
<td>p9</td>
<td>0.04 (13)</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0–0.04</td>
<td></td>
</tr>
<tr>
<td>Other complications</td>
<td>p10</td>
<td>0.26 (13)</td>
<td>0.203</td>
<td>0.203</td>
<td>0–0.26</td>
<td></td>
</tr>
<tr>
<td>ST death / cAVB</td>
<td>p11</td>
<td>0 (13)</td>
<td>0.0002</td>
<td>0.0002</td>
<td>0–0.001</td>
<td></td>
</tr>
<tr>
<td>ST death / Tamponade</td>
<td>p12</td>
<td>0.0588 (13)</td>
<td>0.3</td>
<td>0.3</td>
<td>0–1</td>
<td></td>
</tr>
<tr>
<td>ST death / CVA</td>
<td>p13</td>
<td>0.333 (13)</td>
<td>0.3</td>
<td>0.3</td>
<td>0–1</td>
<td></td>
</tr>
<tr>
<td>ST death / PE</td>
<td>p14</td>
<td>0.3 (15;16)</td>
<td>0.3</td>
<td>0.3</td>
<td>0–1</td>
<td></td>
</tr>
<tr>
<td>ST death / Other</td>
<td>p15</td>
<td>0.077 (13)</td>
<td>0.3</td>
<td>0.3</td>
<td>0–1</td>
<td></td>
</tr>
<tr>
<td>LT death / cAVB</td>
<td>p16</td>
<td>0.0001 (15)</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0–0.001</td>
<td></td>
</tr>
<tr>
<td>LT death / Tamponade</td>
<td>p17</td>
<td>0</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0–1</td>
<td></td>
</tr>
<tr>
<td>LT death / CVA</td>
<td>p18</td>
<td>0.29 (15,16)</td>
<td>-</td>
<td>0.29</td>
<td>0–0.5</td>
<td></td>
</tr>
<tr>
<td>LT death / PE</td>
<td>p19</td>
<td>0.21 (17,18)</td>
<td>-</td>
<td>0.21</td>
<td>0–0.5</td>
<td></td>
</tr>
<tr>
<td>LT death / Other</td>
<td>p20</td>
<td>-</td>
<td>0.3</td>
<td>0.3</td>
<td>0–1</td>
<td></td>
</tr>
</tbody>
</table>

ST = short-term, LT = long-term

Figure Legends:

Figures 1: Results of the one way sensitivity analysis conducted on the 3 variables influencing the decision model. a) The effectiveness of the ablation therapy decreases as the probability of serious complication increases. The dashed line indicates the threshold value at which ablation strategy yields a better outcome than abstention. Above this threshold, ablation is the optimal strategy, below this threshold, the standard therapy becomes the preferred option. b) The effectiveness of the ablation therapy increases as the probability of successful ablation increases.
The dashed line indicates the threshold value at which ablation strategy yields a better outcome than abstention. c) The effectiveness of the ablation therapy improves as soon as the estimation of sudden death rate increases.

Figures 2: Trivariate sensitivity analyses of the three variables influencing the decision model with a probability of serious complications of (a) 0.003 or (b) 0.022.
Sensitivity Analysis
One way

Threshold Values:
- p2 = 0.1
- EV = 0.9900

Expected efficacy of the chosen strategy vs. Rate of success for RF ablation.
Prophylactic Radiofrequency Ablation in Asymptomatic Wolff-Parkinson-White Patients Is Not Yet a Good Strategy: A Decision Analysis
Philippe Chevalier, France Cadi, Alina Scridon, Nicolas Girerd, Theodora Bejan-Angoulvan, Elodie Morel, Isabelle Jaisson Hot, Sylvie Di Filipppe, Christell Ganne and Cyrille Colin

Circ Arrhythm Electrophysiol. published online January 29, 2013;
Circulation: Arrhythmia and Electrophysiology is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 1941-3149. Online ISSN: 1941-3084

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circep.ahajournals.org/content/early/2013/01/29/CIRCEP.112.970459

Data Supplement (unedited) at:
http://circep.ahajournals.org/content/suppl/2013/01/29/CIRCEP.112.970459.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation: Arrhythmia and Electrophysiology can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation: Arrhythmia and Electrophysiology is online at:
http://circep.ahajournals.org/subscriptions/